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Abstract

The Maximum Common Subgraph problem is to find the largest subgraph common to two given
graphs. This problem finds applications in a wide variety of fields, for example it can be utilized
to find common substructures between two molecules, which may be useful in the fields of
chemistry, molecular science and computational drug discovery. As the problem is NP-complete,
finding an optimal solution requires exhaustively exploring the solution space. Various different
approaches have been applied to the Maximum Common Subgraph problem, such as reducing it
to the Maximum Clique or Minimum Vertex-Cover problems, applying Constraint-Satisfaction
Programming or utilizing a partitioning approach.

We propose two methods of data reduction, which may be used to reduce the sizes of the input
graphs and can thus simplify the problem. Additionally, we propose two methods of computing
upper bounds, as means to terminate the search for solutions as soon as the best solution found
matches the upper bound. We explore the exploitation of symmetries, as to reduce the search space
which needs to be explored, and we evaluate an Independent Set solver as an alternative solver.
Finally, we extensively evaluate existing approaches and our techniques experimentally, where we
show that a heuristic independent set solver may significantly outperform existing approaches both
in terms of running time as well as result quality, given a maximum execution time per problem
instance. We additionally introduce a pre-processing phase for a partitioning-based solver, which
is able to reduce the running time on instances of one instance group by over 80%.
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Kurzfassung

Das Problem des Größten Gemeinsamen Subgraphen sucht den größten Subgraphen, den zwei
gegebene Graphen beinhalten. Dieses Problem lässt sich in vielen verschiedenen Forschungsfeldern
anwenden, so kann damit zum Beispiel die größte gemeinsame Struktur zweier Moleküle bestimmt
werden, was in den Bereichen der Chemie, Molekular Wissenschaften und Computer-gestützter
Medikamenten-Entwicklung angewandt werden kann. Da das Problem NP-vollständig ist, lässt sich
eine optimale Lösung nicht direkt berechnen, sondern der gesamte Lösungsraum muss abgesucht
werden. Es wurden bereits verschiedene Ansätze angewandt, um Lösungen für das Problem des
Größten Gemeinsamen Subgraphen zu finden. Dazu zählt eine Reduktion zum Problem der größten
Clique, beziehungsweise zum Problem der kleinsten Knotenüberdeckung, sowie eine Formulierung
als Bedingungserfüllungsproblem und Ansätze, die den Lösungsraum partitionieren.

Wir präsentieren zwei Methoden der Datenreduktion, welche genutzt werden können, um die
Größe der Eingabe-Graphen zu reduzieren und somit die Lösungssuche zu vereinfachen. Weiteres
präsentieren wir zwei Ansätze um obere Schranken für die Lösungsgröße zu berechnen, welche
genutzt werden können, um die Suche im Lösungsraum früher zu beenden. Zusätzlich untersuchen
wir das Ausnutzen von Symmetrien im Lösungsraum, um den Lösungsraum zu verkleinern. Wir
untersuchen weiters die Anwendung eines Algorithmus zur Findung von einer größten stabilen
Menge als Alternative zu bestehenden Lösungsansätzen. In unserer experimentellen Auswertung
untersuchen wir diese Techniken und zeigen, dass ein heuristischer Algorithmus für stabile Mengen
existierende Algorithmen sowohl in Bezug auf Laufzeit als auch in Bezug auf Ergebnisqualität
überbieten kann, wenn die Laufzeit per Eingabe-Graphen limitiert wird. Weiters präsentieren und
untersuchen wir eine Vorverarbeitungs-Phase für einen existierenden Algorithmus, welche für eine
Gruppe an Eingabe-Graphen in der Lage ist, die Laufzeit um über 80% zu reduzieren.

vii





Contents

Acknowledgements iii

Abstract v

Kurzfassung vii

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 3
2.1 Product Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Related Work 7
3.1 Maximum Common Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Clique-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Vertex Cover-based Approaches . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Constraint Programming-based Approaches . . . . . . . . . . . . . . . . 8
3.1.4 Partitioning-based Approaches . . . . . . . . . . . . . . . . . . . . . . 9
3.1.5 Machine Learning-based Approaches . . . . . . . . . . . . . . . . . . . 10

3.2 Automorphisms and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Independent Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Engineering MCS Algorithms 15
4.1 Computing Better Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Mapping Vertices Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Domination Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Exploiting Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 Automorphisms for McSplit and McSplit+RL . . . . . . . . . . . . . . . 20
4.4.2 Automorphisms of the Product Graph Complement . . . . . . . . . . . . 23

4.5 Initial Scores for Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 24
4.6 Speeding up KaMIS for MCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Experimental Evaluation 29
5.1 Environment and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Product Graph Complement Density . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 KaMIS Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 Local Search Iteration Limit . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.2 Branch-Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Tight Bound and Domination Reduction . . . . . . . . . . . . . . . . . . . . . 42
5.6 McSplit+RL Initial Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Exploiting Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7.1 McSplit and McSplit+RL . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.7.2 KaMIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.8 Overall Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



Contents

6 Discussion 77
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

x



1 Introduction

Graphs are used to model a wide variety of problems in various different disciplines. Given two
graphs, it is often necessary to find the largest induced common subgraph between the two graphs.
This is called the Maximum Common Subgraph problem and is NP-complete [GJ90, SAKZ+05].
Different variants of the Maximum Common Subgraph problem exist, in this work we focus on
the Maximum Common Induced Subgraph problem (MCS), which requires the subgraphs to be
vertex-induced on the input graphs. This problem finds applications in a variety of fields, such as
chemistry and molecular science [CVM77, ER11, GFM+14, GARW93, RW02], where Maximum
Common Subgraphs can aid the computational drug discovery. Additional applications can be
found in the fields of pattern recognition [BFG+02, MP03] and source code analysis [DCH97].
Furthermore, Maximum Common Subgraphs can be used as a means of detecting malware [PRS13].
Park et al. [PRS13] present an approach, which derives the so called HotPath from a family of
malware. The HotPath represents execution behavior shared by all members of the malware family.
Thus, to detect new malware, Park et al. [PRS13] propose using Maximum Common Subgraphs to
determine the similarities of the execution behavior of possibly malicious software to the HotPath.

Input graphs for the MCS problem can be either undirected or directed, and vertices as well
as edges may be labeled. When used in the context of biology or chemistry, the instances will
mostly be undirected and vertex-labeled, as graphs are used to represent proteins and molecules.
For some applications it may additionally be of interest to encode the chemical bond between two
atoms via edge labels. In the context of pattern recognition, the graphs are mostly undirected
and they may either be labeled or unlabeled, whereas for source code analysis the graphs contain
both vertex- and edge-labels, but they may either be directed or undirected. The graphs used by
Park et al. [PRS13] to determine execution behavior of software are directed as well as vertex-
and edge-labeled.

Most commonly, the MCS problem is solved by reducing it to a maximum clique problem. This
is done by constructing an auxiliary graph, which is essentially the product of the two input graphs,
where each vertex of the first input graphs is combined with each vertex of the second input graph
to create the vertices of the auxiliary graph. Using this auxiliary graph, the Maximum Common
Subgraph can be determined by using any maximum clique solver [Koc01, Lev73, MNPS], where
the vertices of the clique represent a mapping between vertices of the input graphs. Complementary
to the maximum clique problem is the minimum vertex-cover problem, thus an alternative approach
is to build the complement of the auxiliary graph and then apply a minimum vertex-cover solver
[AKSRL07, SAKZ+05]. An alternative approach is to define the MCS problem as an optimization
problem and solve it using constraint-programming [HMR17, NS11, VV08]. More recently, the
problem has been solved by applying a partitioning scheme on the input graphs [MPT17], which
does not require the auxiliary graph and instead branches on possible mappings between vertices
of the input graph. At each branching step, the remaining unmapped vertices are partitioned into
different sets and only vertices from the same set may be mapped onto each other. This approach
has recently been extended to utilize techniques from machine learning in the branch selection
process [LLJH20], where reinforcement learning is used to learn which branch may yield the highest
reward, based on scores assigned to vertices. The current state-of-the-art is the partitioning based
approach McSplit [MPT17], which is only inferior to a maximum clique solver on edge- and vertex
labeled graphs.

1



1 Introduction

1.1 Contribution
We introduce reduction rules, for reducing the size of the input graphs and thus the problem
size. These rules may be applied to the input graphs themselves, and are thus approach agnostic.
Additionally, we propose two new methods of computing upper bounds, which may be useful
in terminating the search for the Maximum Common Subgraph early, as no optimal solution
may exceed the upper bound. Next, we present an initialization phase for the machine learning
approach of [LLJH20], which may be used to jump start their algorithm by computing initial scores
for vertices. We show, that for some instances, this initialization phase can speed up the original
algorithm by a factor of 100. We additionally propose methods for reducing the search spaces of
different algorithms through the exploitation of symmetries within the graphs. Finally, we propose
to solve the MCS problem by computing independent sets on the complement of the auxiliary
graph and we propose problem specific changes to the current state-of-the-art independent set
solver. We show, that for difficult instances, a heuristic independent set solver may significantly
outperform other approaches in terms of running time and result quality.

1.2 Structure of This Thesis
First, we discuss notation and necessary preliminaries in Chapter 2. We follow with a thorough
literature review regarding the related work on the MCS problem, as well as related algorithms
and literature in Chapter 3. Chapter 4 describes our contributions in depth. We experimentally
evaluate our contributions against state-of-the-art competitors in Chapter 5. Finally, we conclude
with Chapter 6 and discuss possible future work.
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2 Preliminaries

In this chapter we discuss the preliminaries and the notation used throughout the remainder of
this thesis.

A graph G = (V (G), E(G)) consists of the vertex set V (G) and the set of undirected edges
E(G). We speak of a digraph, if the edges are directed. Directed edges are denoted as (u, v) and
undirected edges as {u, v}. The label of a vertex u ∈ V (G) is a mapping of V (G) → N and is
denoted as µG(u). For edges, the label of an edge is mapping of E(G) → N . We denote by
λG({u, v}) the label of the edge {u, v} ∈ E(G) and λG((u, v)) denotes the label of the directed
edge (u, v). We denote by µG(V (G)) set of vertex labels existing in G.

The neighborhood N(u) of a vertex u denotes the set of neighbors of u, i.e. N(u) = {v ∈ V (G) :
{u, v} ∈ E(G)} in the undirected case, or N(u) = {v ∈ V (G) : (u, v) ∈ E(G)} in the directed case.
The closed neighborhood is denoted as N [u] = N(u)∪ {u}. A vertex u has degree deg(u) = |N(u)|,
i.e. the degree of a vertex is the size of its neighborhood, u is called isolated if deg(u) = 0. A
graph is complete, if all vertex pairs of the graph are connected by an edge, a digraph is complete,
if all vertex pairs {u, v} of the graph are connected by an edge (u, v) as well as an edge (v, u). The
complement GC of a graph G contains exactly those edges missing in G which are required to form
a complete graph. Given a set of vertices V ⊆ V (G) the vertex induced subgraph G[V] of a graph
is a subgraph of G, such that G[V] = (V, {{u, v} ∈ E(G) : u, v ∈ V})

Definition 2.1. An isomorphism between two graphs G1 and G2 is a bijective function ϕ, such
that ∀u, v : {u, v} ∈ E(G1)⇔ {ϕ(u), ϕ(v)} ∈ E(G2), i.e. a bijective mapping from vertices of one
graph to the vertices of the other graph, such that edges are preserved.

Definition 2.2. An automorphism is an isomorphism from a graph G to itself.

With i ∈ [x..y] we denote that i can take the values x ≤ i ≤ y with i ∈ Z. An undirected path
in G is a sequence of vertices u1 → u2 → · · ·ui, such that ∀j ∈ [1..i− 1] : {uj , uj+1} ∈ E(G) and
no vertex appears more than once. A graph G is connected if there is a path between every pair of
vertices. A digraph G is weakly connected if the underlying graph is connected.

Definition 2.3. The Maximum Common Induced Subgraph (MCS) problem is, given two input
graphs G1 and G2, find the largest sets of vertices V1 ⊆ V (G1) and V2 ⊆ V (G2) with |V1| = |V2| ,
such that the induced subgraphs G1[V1] and G2[V2] are isomorphic.

Other variants of the problem exist, e.g. the Maximum Common Connected Subgraph (MCCS)
problem, where we search for the maximum common induced subgraph, that is connected. The
input graphs for the MCS problem can be directed or undirected and edges and vertices may
optionally have labels, if no labels are given, we assume the unlabeled vertices and edges to all
have identical labels. The labels of the input graphs have to be taken into account, such that only
vertices and edges of matching labels may be mapped onto each other.

Definition 2.4. A clique is a set of vertices C ⊆ V (G), such that G[C] induces a complete graph,
i.e. all vertices in C are adjacent to each other.

A clique C is maximal if no further vertices can be added to it without violating the clique
constraint. A maximum clique is a clique of a given graph, such that no larger clique exists. An
independent set is a set of vertices of I ⊆ V (G), such that ∀u, v ∈ I : u /∈ N(v), meaning that the
vertices of I are not adjacent. As with the clique, a maximal independent set is an independent set
such that no further vertices can be added without violating the independent set constraint, and a

3



2 Preliminaries

G2 1 1 2 0

G1

1

0

2

1

1,1 1,1

0,0

2,2

1,1 1,1

Figure 2.1: Example of two input graphs with vertex labels and the resulting product graph.
The edge-style in the product graph encodes how an edge was created: solid
edges are created through the existence of edges in the input graphs whereas
dashed edges are created through the absence of edges between vertices of the
input graphs.

maximum independent set is a largest of those sets. Note the relationship between cliques and
independent sets: a maximum clique in G is a maximum independent set in GC and a maximum
independent set in G is a maximum clique in GC . Additionally note, that neither the maximum
independent set nor the maximum clique are necessarily unique. A vertex-cover is a set of vertices
V ∈ V (G), such that V (G) \ V is an independent set. The vertex-cover problem is to find a
minimum number of vertices, such that at least one endpoint of each edge is in the vertex-cover.
The problem of finding a maximum independent set is thus equivalent to finding a minimum
vertex-cover. A complete graph with n vertices has a minimum vertex-cover of size n− 1.

2.1 Product Graph
The product graph (or association graph, modular product of graphs or compatibility graph) PG of
two graphs G1 and G2, subject to labels is defined as follows:

Definition 2.5. V (PG) = {r = uv ∈ V (G1)× V (G2) : µG1(u) = µG2(v)}}

Definition 2.6. For r = uv, s = u′v′ ∈ V (PG) with u, u′ ∈ V (G1) and v, v′ ∈ V (G2), {r, s} ∈
E(PG) if and only if either

1. {u, u′} ∈ E(G1) ∧ {v, v′} ∈ E(G2) ∧ λG1({u, u′}) = λG2({v, v′}) or

2. {u, u′} /∈ E(G1) ∧ {v, v′} /∈ E(G2)

Definition 2.7. For directed input graphs, the product graph is constructed analogous to the
undirected case.

Note, that the product graph is completely unlabeled and consists of undirected edges, regardless
of the input graphs. An example of two input graphs and the resulting product graph is given in
Figure 2.1. To compute the MCS we could now apply a maximum clique algorithm on the product
graph, where any vertex of the clique represents the mapping of two vertices from the input graphs
[Lev73]. However, we can instead compute the product graph complement and compute either
a maximum independent set or a minimum vertex-cover to arrive at an optimal solution. The
complement PGC of the product graph can be computed directly by employing the following rules:

4



2.1 Product Graph

G2 1 1 2 0

G1

1

0

2

1

1,1 1,1

0,0

2,2

1,1 1,1

Figure 2.2: Example of two input graphs with vertex labels and the resulting product graph
complement. Solid edges of the product graph correspond to edges created
with G1

C ×G2, dashed edges correspond to edges created with G1 ×G2
C and

dotted edges correspond row and column clique edges.

Definition 2.8. V (PGC) = {r = uv ∈ V (G1)× V (G2) : µG1
(u) = µG2

(v)}}

Definition 2.9. For r = uv, s = u′v′ ∈ V (PG) with u, u′ ∈ V (G1) and v, v′ ∈ V (G2), {r, s} ∈
E(PG) if and only if either

1. {u, u′} ∈ E(G1
C) ∧ {v, v′} ∈ E(G2) (denoted as G1

C ×G2) or

2. {u, u′} ∈ E(G1) ∧ {v, v′} ∈ E(G2
C) (denoted as G1 ×G2

C) or

3. {u, u′} ∈ E(G1) ∧ {v, v′} ∈ E(G2) ∧ λG1
({u, u′}) ̸= λG2

({v, v′})

Definition 2.10. For directed input graphs, the product graph complement is constructed analogous
to the undirected case.

As with the product graph, the product graph complement is completely unlabeled and edges
are undirected. Figure 2.2 gives a small example of two input graphs and the resulting product
graph complement. Note the construction of the product graph complement – the rows contain all
vertices created by fixing one vertex in G1 and combining that vertex with all vertices of identical
label in G2, whereas the columns consist of all vertices created by fixing one vertex in G2 and
combining that with vertices of identical label in G1. This notion of rows and columns in the
product graph (complement) will be relevant later on. We expect the complement to be denser
than the product graph itself in most cases. Let nG1 = |V (G1)| and mG1 = |E(G1)|, analogously
nG2

and mG2
for G2. If we consider undirected and unlabeled input graphs, the product graph

PG will consist of nPG = nG1
nG2

vertices and

mPG = 2(mG1
mG2

+ (
(nG1

− 1)nG1

2
−mG1

)(
(nG2

− 1)nG2

2
−mG2

))

edges. Due to the construction of the product graph we first introduce edges for all combination
of edges of the two input graphs. Next, we pair all missing edges from both input graphs, to
construct edges in the product graph. Finally, given two vertices u, u′ ∈ V (G1) and two vertices
v, v′ ∈ V (G2) we arrive at four different vertices in the product graph. Thus combining the edges
{u, u′} ∈ V (G1) and {v, v′} ∈ V (G2) yields two unique edges in E(PG), namely {uv, u′v′} and
{uv′, u′v}. Therefore, we multiply the number of edges by two, to arrive at the final edge count of
the product graph. Conversely, the product graph complement PGC will have

mPGC =
(nPG − 1)nPG

2
−mPG

5



2 Preliminaries

edges, i.e. exactly those edges, which are missing in E(PG) to form a complete graph. The product
graph complement is sparse when either both input graphs are very dense, or both input graphs
are very sparse. An evaluation of the densities of our product graph complement graphs can be
found in Section 5.3.
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3 Related Work

In this chapter we discuss prior work done on the MCS problem as well as some closely related
problems. We first discuss various approaches to the MCS problem. First we discuss prior work
using clique-based or vertex-cover based approaches to the MCS problem. Second, we review
variants utilizing Constraint Satisfaction Programming as well as a partitioning based approach
and its extension utilizing machine learning. Finally, we describe an algorithm used for graph
isomorphism testing, a tool for computing automorphisms, as well as a maximum independent set
solver used in our work.

3.1 Maximum Common Subgraphs

We first discuss the prior work done on the MCS problem, introducing various different approaches
as well as some important results and we present the current state-of-the-art.

3.1.1 Clique-based Approaches

Traditionally, the MCS problem has been solved by building the product graph and computing the
maximum clique on that graph. This variant of solving the MCS problem was first described by
Levi [Lev73]. Here we describe the state-of-the-art in clique solvers, as well as some other notable
work.

Based on the Bron-Kerbosch algorithm [BK73], which enumerates all maximal cliques of a given
graph, Koch [Koc01] presents different new variants, based on properties of the product graph.
The Bron-Kerbosch algorithm [BK73] operates on three sets C, P and S, where C stores the
current clique, P contains the set of vertices, which may still enlarge the current clique and S
contains a set of vertices, which may not be added to C anymore, as the vertices in S have already
been processed. In every branching step, a vertex u ∈ P is added to C and P is set to be P ∩N(u)
and S is set to S ∩N(u). With these updated values, the algorithm calls itself recursively. After
the recursive branching returns, S is enlarged by u, indicating that no further unique maximal
clique which include u can be found.

Koch [Koc01] extends this algorithm to only find cliques representing Maximum Common
Connected Subgraphs, and notes, that for the non-connected MCS problem many automorphisms
may occur, which lead to many equivalent solutions, and therefore a large search tree. Even though
Koch [Koc01] makes this observation, to the best of our knowledge, automorphisms have not yet
been explicitly exploited for the MCS problem in the literature.

McCreesh et al. [MNPS] note that the downside of the approach of Koch lies in the base-
algorithm used, as the Bron-Kerbosch algorithm is a maximal clique enumeration algorithm, thus
potentially very inefficient at finding the maximum clique.

To the best of our knowledge, the state-of-the-art in maximum clique-solvers is due to Li et al.
[LJM17] and is called MoMC. Most modern Branch-And-Bound clique-solvers partition the search
space in the following way: at each branching step – given a lower bound r, the vertices are
partitioned into a set A, such that the vertices of A may form at most a clique of size r, and a set
B of branching vertices. Branching only has to be performed on vertices of the set B, therefore
it is beneficial to have B be as small as possible. MoMC combines two different partitioning
approaches, one based on a reduction to MaxSAT, the other based on a static vertex ordering:
Given a vertex-ordering O, all vertices of A should be larger than the vertices of B w.r.t. the
ordering O. At each branching step, MoMC computes a partition using the MaxSAT reduction,

7



3 Related Work

if that yields an empty set for B, no branching has to occur at this step. If B is not empty, an
alternate Bs is built by adding all vertices v to Bs, such that v is smaller than the largest vertex
of B w.r.t. O. Depending on a parameter α and the ratio of sizes between B and Bs it is decided,
which of the two sets is chosen. If |B|

|Bs| < α, then B is chosen, otherwise Bs is chosen. Li et al.
show that given α = 0.6 this approach outperforms previous algorithms significantly, and it has a
slight advantage over similar implementations, which only utilize either one of the partitioning
methods. Note, that a single-partitioning-approach implementation can be achieved by setting α
to 0 (Vertex-order partition) or 1 (MaxSAT).

3.1.2 Vertex Cover-based Approaches

As discussed in Chapter 2, the MCS problem can be solved by building the product graph
complement, which may then be used to compute a minimum vertex-cover in order to arrive at an
optimal result.

Suters et al. [SAKZ+05] present such an approach, which applies the branch-and-bound
approach to the vertex-cover problem. For their algorithm, they make use of the construction of
the product graph complement, which introduces row- and column cliques for each vertex. Let
r = uv, u ∈ G1, v ∈ G2 be any vertex in PGC, r belongs to a row-clique which corresponds to u
being mapped to any applicable vertex in G2, and to a column-clique, which corresponds to v being
mapped to any applicable vertex in G1 (see Chapter 2 for details). Any minimum vertex-cover
has to either include all of any row (column)-clique or exclude one single vertex of the clique.
Therefore, for each vertex r it is required to branch into one branch which excludes r and instead
includes the remainder of its cliques, and one branch which includes r and all its clique neighbors.
Let k denote the size of a clique, there are k + 1 possible branches for each clique, k branches
where one vertex each is excluded, plus one additional branch, where no vertex is excluded. Let
n1 = |V (G1)| and n2 = |V (G2)|, the algorithm proposed by Suters et al. [SAKZ+05] iterates
over the n1 rows of the product graph complement and in each iteration branches up to n2 + 1
times, as discussed before. Therefore, this algorithm has a worst-case running time complexity of
O((n2 + 1)n1). Note, that this bound is not tight, as in deeper branching levels the number of
possible branches may be smaller than n2 + 1, as an excluded vertex immediately implies all its
clique neighbors are part of the vertex-cover and can therefore not be branched upon.

Another approach based on vertex-cover, which does not utilize either the product graph or
its complement at all, is proposed by Abu-Khazam et al. [AKSRL07]. For their algorithm,
Abu-Khazam et al. compute a vertex-cover C of G1 and try to match the vertices of the cover
to vertices of G2 by utilizing an exhaustive search. Thus, they arrive at a number of candidate
subgraphs of G1[C], which may be extended by further vertex mappings to achieve a maximum
common subgraph. This extension of candidate sets to maximal common subgraphs is done
by computing a maximum independent set in G1 \ C. Let n2 = |V (G2)|, the overall running
time complexity, dependent on k = |C|, which denotes the the size of the vertex cover of G1, is
O(3n2/3(n2 + 1)k).

To the best of our knowledge, neither of these two vertex-cover based approaches has been
evaluated experimentally in the literature.

3.1.3 Constraint Programming-based Approaches

The MCS has been defined as a constraint satisfaction problem multiple times throughout the
literature [HMR17, MNPS, NS11, VV08]. Constraint satisfaction problems (CSP) are defined by
a set of decision variables X, their possible domain of values D as well as a set of constraints C.
This section explores some of the most recent approaches found.

Vismara and Valery [VV08] present a simple CSP formulation for the MCS problem, where each
vertex u ∈ V (G1) has one decision variable xu, the domain of each variable is V (G2) ∪ ⊥, where
⊥ denotes, that a vertex is not matched, otherwise a vertex u of G1 is matched to a vertex of G2

as indicated by the decision variable xu. A simple constraint is required, which enforces, that for
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an edge {u, v} ∈ G1 either xu or xv is set to ⊥ or {xu, xv} ∈ E(G2). Finally, as the mapping has
to be bijective, a uniqueness-constraint is required, such that each xu ∈ X ̸= ⊥ has a unique value.
To achieve this, Vismara and Valery [VV08] define a set of binary constraints between each pair
of possible matchings of vertices. This CSP approach can be extended to graphs with labeled
vertices, by simply modifying the domain of each variable xu to only those vertices of G2 which
have the same label as u.

Ndiaye and Solnon [NS11] build on the work of Vismara and Valery [VV08] by replacing the
binary constraint between all pairs of possible vertex matchings by a soft constraint, which
maximizes the number of unique assignments (except for assignments to ⊥) whilst maintaining
the bijectivity constraint.

For a long time it was believed that constraint programming approaches are the fastest method of
solving the MCS problem [MNPS], however, in their experiments, McCreesh et al. [MNPS] showed,
that state-of-the-art clique solvers are superior on graphs with labeled vertices and competitive on
unlabeled graphs.

Hoffmann et al. [HMR17] present a constraint-programming algorithm for a slightly different
problem: given two graphs G1 and G2 and a natural number k, check if all but k vertices of G1

can be mapped to G2. This modified problem lies between subgraph isomorphism, which asks to
find a pattern graph in a target graph, and the MCS problem. To solve this modified problem,
Hoffmann et al. [HMR17] slightly modify the constraint-programming approach by Ndiaye and
Solnon [NS11]. First, Hoffmann et al. alter the approach to be bit-parallel by storing domain
values as bit sets and graphs as adjacency matrices. Additionally, instead of one ⊥ value to denote
a non-matched vertex, Hoffmann et al. introduce k different ⊥ values. Finally, this algorithm
can be turned into a MCS solver, by setting k = 0 and iteratively increasing k until a solution
is found. This algorithm is referred to as k ↓ and differs to other approaches in that it attempts
to find solutions of decreasing size, whereas most solvers try to find improved larger solutions
until no larger solution can be found. According to their experiments, which were performed only
on unlabeled instances, k ↓ outperforms other constraint-programming approaches, as well as
state-of-the-art clique solvers.

3.1.4 Partitioning-based Approaches

McCreesh et al. [MPT17] present a partitioning approach, which forgoes computing the product
graph or its complement completely, and instead, their algorithm McSplit, purely operates on
the two input graphs. To compute a maximum common subgraph solution, McSplit branches on
mappings between vertices of the two input graphs, computing new labels for all vertices in the
input graphs to quickly determine, which mappings may be added to the current solution. Each
vertex of the two input graphs start off with empty labels. When two vertices u ∈ G1 and v ∈ G2

are mapped onto each other, in the input graphs the neighbors of N(u) and the neighbors of
N(v) have a 1 appended to their label, indicating that these vertices are adjacent to the mapped
vertex, whereas non-adjacent vertices in the input graphs have a 0 appended to their label. This
update to the labels leads to a partitioning of the vertices, such a partition with corresponding
label is referred to as a domain by McCreesh et al. Next, only vertices of the same domain may
be mapped onto each other, otherwise the maximum common induced subgraph property would
be violated. See Figure 3.1 and Table 3.1 for a small example, of how McSplit operates.

This labeling not only filters which vertices may be mapped onto each other, it additionally
can be used to compute an upper bound during the branching. Let DG1

i and DG2
i denote the

set of vertices in domain i for G1 and G2 respectively. The upper bound is simply computed
by ub =

∑︁
∀i min(|DG1

i |, |D
G2
i |). If for any branch this upper bound is less than or equal to an

already computed lower bound, the search at that branch can be terminated, as no improvement
is possible.

McSplit can be extended to allow for vertex- and edge labels, as well as for directed graphs and
connected subgraphs. To resolve ambiguities in the selection of branches, if multiple equivalent
possibilities exist, McCreesh et al. [MPT17] propose to branch on nodes with large degree first.
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The authors note, that this heuristic was chosen based on the result of some small scale experiments,
however, different approaches may be applied as well, further research into that topic is left for
future work.

In their experiments the authors demonstrate that McSplit outperforms constraint-programming
approaches on all graph classes, and state-of-the-art clique solvers on unlabeled graphs, whereas
clique solvers still perform best on labeled graphs.

v0 v1

v2v3

v4 v5

(a) G1

w0 w1

w2w3

w4 w5

(b) G2

Figure 3.1: Two input graphs for the McSplit example. Vertex labels are encoded as
the style of the outlines of vertices. McSplit produces the following mapping:
v0→ w0, v1→ w1, v2→ w2, v4→ w3 and v5→ w4.

3.1.5 Machine Learning-based Approaches

As machine learning finds more wide-spread uses, it is not surprising, that machine learning
techniques are applied to graph theoretical problems as well. In this section, we discuss a recent
approach, which employs techniques from machine learning to the MCS problem.

Built on top of McSplit [MPT17], Liu et al. [LLJH20] propose to use reinforcement learning
as the heuristic for branch-selection. The authors note, that their approach is not confined to
McSplit and could be applied to other solvers as well, however, at the time of publishing of their
work, McSplit constituted the state-of-the-art, therefore the technique was applied to that solver.

In reinforcement learning, agents need to make decisions based on an expected numerical gain
value. After a decision has been made, the actual gain is observed and turned into a reward for
the agent, the goal for the agent is to maximize the reward by taking actions with large gains. In
the context of the McSplit algorithm, the algorithm is perceived as an agent, which has the goal of
reaching a leaf branch early on, as to reduce the size of the branching tree by achieving a good
lower bound. At each branch, each choice of possible mappings are considered as different actions
the agent can take, each action with its own reward value. For the computation of the expected
reward value, Liu et al. [LLJH20] propose a method, which computes the rate of reduction of
the upper bound value, which bounds the solution size possible in the current branch. Once the
upper bound of a branch is less than or equal to the currently largest solution, no improvement
can be made in a branch and thus the branch can be terminated. Each vertex has a cumulative
score value of rewards and branches are chosen based on this score, such that vertices with large
score are branched on first. Note, that these scores are learned from scratch for each instantiation
of the algorithm with a pair of input graphs. Liu et al. [LLJH20] show that their approach
(named McSplit+RL) improves on McSplit consistently throughout all experiments. However,
their experiments simply compare McSplit+RL with McSplit, but not with any other approach.
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G1

Vertex Label
v0 0
v1 1
v2 2
v3 0
v4 0
v5 0

G2

Vertex Label
w0 0
w1 1
w2 2
w3 0
w4 0
w5 0

(a) Initial labels, ub = 6

G1

Vertex Label
v0 01
v2 21
v3 01
v4 00
v5 00

G2

Vertex Label
w0 01
w2 21
w3 00
w4 00
w5 00

(b) After mapping v1 to w1, ub = 5

G1

Vertex Label
v0 010
v3 010
v4 001
v5 001

G2

Vertex Label
w0 010
w3 001
w4 001
w5 001

(c) After mapping v2 to w2, ub = 5

G1

Vertex Label
v3 0100
v4 0010
v5 0010

G2

Vertex Label
w3 0010
w4 0010
w5 0010

(d) After mapping v0 to w0, ub = 5

G1

Vertex Label
v3 01000
v5 00100

G2

Vertex Label
w4 00100
w5 00100

(e) After mapping v4 to w3, ub = 5

G1

Vertex Label
v3 010000

G2

Vertex Label
w5 001000

(f) After mapping v5 to w4, ub = 5

Table 3.1: Example of McSplit for Figure 3.1. The different labels are used after each step
to determine an upper bound. The upper bound ub is given at each step. The
final solution ends up as v0→ w0, v1→ w1, v2→ w2, v4→ w3 and v5→ w4.

3.2 Automorphisms and Isomorphisms

Weisfeiler and Leman introduce an algorithm, which is known as the Weisfeiler-Leman algorithm
and it is useful for testing for graph isomorphisms [WL68]. Additionally, the Weisfeiler-Leman
algorithm has recently been of interest in the field of machine learning by first computing node
embeddings for each vertex of the graph, which are then used as the feature vector for nodes
[MFK21, SSvL+11, TGL+19]. These node embeddings can be computed using i iterations of the
Weisfeiler-Leman algorithm, where for each vertex v a vector xv is computed, containing the label
the vertex obtained in each of the i iterations of Weisfeiler-Leman.

The algorithm works as follows

1. Initialize: assign each vertex their initial label (0 if no labels are given)

2. Refine: on each vertex aggregate the labels of its closed neighborhood into a multi set, map
that multi set onto a new label and assign it to the vertex

3. Repeat the second step until the labeling is stable, i.e. the relative relationship between all
vertices regarding their label remains unchanged

If for two graphs G1 and G2 the stable labelings are non-isomorphic then the graphs themselves
have to be non-isomorphic as well. Note, that isomorphic labelings are a necessary but not
sufficient requirement for graph isomorphism. A simple example, where the Weisfeiler-Leman
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0

0 0

0

1 1

0

1 1

(a) Initial Graph

{0,0,0,0,0} = 2

{0,0} = 3 {0,0} = 3

{0,0,1,1} = 5

{0,1} = 4

{0,1} = 4

{0,0,1,1} = 5

{0,1} = 4

{0,1} = 4

(b) After the first iteration

Figure 3.2: One iteration of the Weisfeiler-Leman algorithm on a small graph

0

0 0

0

1 1

0

1 1

Orbit 1

Orbit 2

Orbit 3

Figure 3.3: Example of orbits in a graph. Vertices are labeled, non-trivial orbits are
represented by the dashed rectangles.

algorithm fails to show non-isomorphism is one circular graph consisting of 6 vertices and one
graph consisting of two separate triangles, all vertices have the same label. The algorithm arrives
at the same stable labeling for both graphs, whereas the graphs are clearly not isomorphic to each
other. Therefore, the Weisfeiler-Leman algorithm is useful for determining non-isomorphism, to
prove graph isomorphisms further computations are required, which are not relevant here and are
thus not discussed.

The new vertex labels after each iteration of the algorithm can be used to determine structural
information about a graph. After the n-th iteration, vertices which have the same label all have
equivalent n-hop neighborhoods w.r.t. vertex labels. Figure 3.2 shows a small example with one
iteration of the algorithm executed. For each vertex u we have the multi set of the labels of N [u]
after the first iteration, and the new label to which that multi set is mapped. We can clearly
observe how vertices with the same 1-hop neighborhood and same initial label end up with the
same new label after the first iteration. Note, that the labeling is already stable after the first
iteration, therefore no further iterations are given.

Nauty is a tool for determining graph automorphisms by McKay et al. [MP14]. Given a (labeled)
graph G, Nauty computes all automorphisms of the graph, as well as so called orbits. An orbit O
is a maximal set of vertices, such that ∀u, v ∈ O : there exists an automorphism ϕ in G, such that
ϕ(u) = v. An orbit can thus be considered an equivalence class of vertices. See Figure 3.3 for a
small example of non-trivial orbits in a graph.
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3.3 Independent Set

3.3 Independent Set
As mentioned in Chapter 2, by building the product graph complement, the MCS can be determined
using either a vertex-cover or an independent set solver. We consider an independent set solver
due to Lamm et al. [LSS+19] called KaMIS, which has been shown to perform well in practice.
Although KaMIS targets the weighted independent set problem, i.e. the problem of finding an
independent set of maximum weight, the same algorithm can be applied to the unweighted problem
as well. Their algorithm combines a branch-and-bound approach with reduction rules, which
decrease the size of the input graph. Together, this approach is referred to as Branch-And-Reduce.
These reductions consist of rules which can add vertices to the solution immediately, remove some
vertices from the graph entirely or fold some vertices into a single super vertex, such that at the
end of the algorithm this super vertex is unfolded and the solution extended [LSS+19]. We next
give a brief overview of a few reduction rules. The neighborhood reduction puts a vertex u ∈ V (G)
into solution, if the weight of u is larger than the weight of u′s neighborhood. Given two vertices
u, v ∈ V (G), u is said to dominate v if N [u] ⊇ N [v]. In such a case, v may always replace u in
an independent set, and thus u can be removed from the graph. Two vertices u, v ∈ V (G) are
twins, if their neighborhood N(u) = N(v) = {p, q, r}. In this case, u and v can be contracted into
a single vertex {u, v} with weight equal to the sum of the weights of u and v, and at a later time
it is decided whether u and v are in the solution or any subset of their neighbors are. If there
exists a clique in G, such that at least one vertex u of the clique has no non-clique neighbors, u
can be put into solution. Given a vertex u ∈ V (G), if u has neighborhood N(u) = {p, q}, such
that p and q are not adjacent to each other, the three vertices {u, p, q} are folded into a single
vertex with the combined weight of p and q.

When the algorithm is first called, KaMIS initially applies the reduction rules and thus attempts
to reduce the size of the graph right away. Next, the Branch-And-Reduce algorithm searches for
an independent set in each graph component separately. After each branching step where a new
vertex is added to the solution, the reduction rules are called again. The idea is, that adding a
vertex v to solution - and thus excluding all vertices u ∈ N(v) - may change the graph such that
the reduction rules may apply again and thus simplify the problem. Additionally, adding a vertex
v to solution may split the remaining graph into multiple components. If that is the case, KaMIS
will again apply the algorithm on each component separately.

In addition to the exact solver, Lamm et al. [LSS+19] present a heuristic Local Search algorithm
as well. This Local Search algorithm utilizes the reductions for an initial reduction as well, however,
during the search the reductions are not used again. Note, that the Local Search algorithm can be
used to obtain an initial lower bound for the Branch-And-Reduce algorithm. The Local Search
starts off by applying the data reduction rules to reduce the size of the input graph. On this
reduced graph, the Local Search finds some initial solution using a greedy heuristic. Next, this
solution is modified in k iterations, by either performing a combination of so called 1-2 swaps or by
forcing vertices into the solution. During 1-2 swaps KaMIS attempts to find a vertex u currently
in solution, such that u can be removed and two neighbors of u can be added to the solution
instead. Forcing a vertex u into the solution requires removing all neighbors of u from solution,
if any currently are in solution. After these steps the solution may not be maximal, i.e. further
vertices may be added to solution. This process is repeated for some fixed number of iterations.
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4 Engineering MCS Algorithms
In this chapter we present our contributions, starting with methods of computing upper bounds
on the product graph complement. Next, we introduce a method for mapping vertices before any
solver is applied, followed by a rule which may be applied to exclude vertices from the mapping
altogether. We follow with a description of how automorphisms may be exploited to reduce the
search space, followed by two different methods of how reinforcement learning approaches may
be enhanced by computing initial scores based on the neighborhoods of vertices. Finally, we
discuss some MCS specific changes to an independent set solver. An overview of our suggested
improvements and to which algorithm they may apply can be found in Table 4.1

4.1 Computing Better Upper Bounds
Upper bounds are useful in determining when a solution to a problem cannot be improved upon
any further. That is, given an upper bound ub for a MCS instance, no solution may be larger
than ub. Therefore it is desirable to compute upper bounds, as closely as possible to the size of
the optimal solution. Let LG1

l and LG2

l denote the number of vertices with label l in G1 and G2

respectively. A trivial upper bound is achieved by the following equation (see Section 3.1.4):

ub =
∑︂
∀l

min (LG1

l , LG2

l ) (4.1)

Here, we propose two new methods for computing upper bounds on the product graph comple-
ment. Both methods center around the idea of having two columns (rows) of the product graph
complement be a clique, i.e. the vertices of the two columns (rows) induce a complete graph,
which indicates that only one vertex of these two columns (rows) may be in the solution. Unless
explicitly specified, we will now always only speak of columns, though everything applies to rows
as well.

Lemma 4.1.1. Let XG1

l and XG2

l be initialized to LG1

l and LG2

l , respectively, for all l. Given the
columns of the product graph complement which represent mappings to the vertices u, v ∈ G2 with
µG2

(u) = µG2
(v), if the two columns form a clique, XG2

µG2
(u) can be decremented by one and thus

potentially the upper bound reduced. Once a column has been used to decrement the label, it cannot
be used again. This holds analogously for G1 and the rows of the product graph complement.

Proof. Let C(u) denote the column in which a vertex u is located. Given that the vertices of two
columns C(u) and C(v) with label l are a clique, adding any one vertex w of these columns to the
independent set immediately excludes all s ∈ N(w) and thus all other vertices of the columns C(u)
and C(v). Therefore, either any vertex in C(u) or any vertex in C(v) may be in the solution, but
not vertices from both columns. Hence we can decrease the number of vertices with label l which
can be mapped. Note, that this is restricted to a single pair of columns. Assume columns C(u),
C(v) and C(w) all with label l, if C(u) and C(v) as well as C(u) and C(w) are cliques, but C(v)
and C(w) are not, the counter for label l may only be decremented by one, as at the same time
vertices of columns C(v) and C(w) may be in the solution. Therefore, once a column has been
used to decrement a counter, it cannot be used again in this approach. This holds analogously for
rows.

After applying this method to all possible pairs of columns with matching labels, Equation 4.1
for computing the upper bound can be used to re-compute the upper bound, potentially yielding a
smaller bound. This algorithm is shown in Algorithm 1.
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Algorithm 1: Pseudo-Code depicting the improvement of the upper bound com-
putation
Data: G1, G2, PGC

Result: updated upper bound ub
1 n← |V (G2)|
2 // n× n matrix of edge counters between columns
3 M ←

(︁
···
)︁

4 forall {u, v} ∈ E(PGC) do
5 // Assume column() returns the column in which a vertex is located
6 i← column(u)
7 j ← column(v)
8 Mi,j ←Mi,j + 1
9 Mj,i ←Mj,i + 1

10 end
11 S ← ∅
12 for i← 1 to n do
13 if i ∈ S then
14 continue
15 end
16 for j ← i+ 1 to n : j /∈ S do
17 if Mi,j = |coli| ∗ |colj | ∧ µG2(i) = µG2(j) then
18 // Columns i and j form a clique
19 XG2

µG2
(i) ← XG2

µG2
(i) − 1

20 S ← S ∪ {j}
21 break
22 end
23 end
24 end
25 ub =

∑︁
∀l min (XG1

l , XG2
l )

26 return ub
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1 1

0

2

1 1

1 1 2 3

Figure 4.1: Example product graph complement with the column-contracted graph used
for the upper bound computation. The vertices are labeled with l ∈ {1, 2, 3}.

As an example for this method, consider the product graph complement introduced in Chapter 2
and depicted in Figure 2.2: Using the formula above, we get an upper bound of ub = 4. However,
the columns corresponding to vertices of G2 with label 1 induce a complete graph. Thus by
applying Lemma 4.1.1, we can reduce LG2

1 from 2 to 1 and by that reduce the upper bound to
ub = 3.

This approach is aided by the fact, that all columns of the product graph complement form
cliques, therefore it suffices to check whether between two columns all vertices are fully connected.
To compute these cliques, we can iterate over all edges of the graph and keep counters for the
number of edges that connect one column to another column. Let cu denote the number of vertices,
which are located in column C(u). If for two columns C(u) and C(v) there are |cu| ∗ |cv| edges
between the columns, the two columns form a clique. Therefore, we then iterate over all pairs
of columns with matching labels and check this condition. Overall, with m = |E(PGC)| and
nG2

= |V (G2)| we arrive at a running time complexity of O(m+ n2
G2

). Analogously for the rows
of the product graph complement we simply replace nG2 with nG1 = |V (G1)|.

As mentioned before, this method of reducing the upper bound is dependent on two columns
having the same label. However, not all graphs in the context of the MCS problem are labeled.
Additionally, two columns with different labels may form a clique as well, though that case is
irrelevant for the previous approach. Therefore, we propose an additional approach, which -
although being more costly - has the potential to alleviate both downsides.

To achieve this, we first create a new graph with n = |V (G2)| (n = |V (G1)|) vertices, i.e. by
contracting the columns (rows) of the product graph complement, such that there is an edge
between two vertices if the two corresponding columns (rows) form a clique. We call this the
column contracted graph Gcol (row contracted graph Grow). We then arrive at an upper bound by
computing the independent set of this contracted graph.

Lemma 4.1.2. The size of a maximum independent set on a column contracted graph (row
contracted graph) is an upper bound to the size of the MCS on the product graph complement.

Proof. There is an edge between two vertices u and v in Gcol if and only if the corresponding
columns C(u) and C(v) form a clique. Suppose for a given product graph complement opt denotes
the optimal solution to the MCS problem. Therefore, there have to be opt columns in PGC , from
which vertices can be chosen, such that the vertices are independent. This implies that there
are at least opt columns, which do not form cliques with each other, and by construction of Gcol

therefore at least opt vertices, which are independent of each other. The maximum independent
set of Gcol therefore has size at least opt and is thus an upper bound to opt. The proof works
analogously for Grow.
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See Figure 4.1 for an example consisting of a product graph complement and the column
contracted graph.

Computing the contracted graph has a running time complexity identical to the previous
approach, however, in this case the search for pairs of columns forming cliques is not restricted
to columns with identical label. Consider Algorithm 1: We can modify it to construct a column
contracted graph with n vertices. To build the contracted graph, we simply have to remove the
label condition from Line 17 and replace Lines 19 - 21 with the creation of an edge between vertices
i and j.

This method works regardless of the labels present, however, the computed upper bound may
be larger than the original bound. Therefore, we propose using this method only in conjunction
with some other method of arriving at an upper bound, such as Equation 4.1.

Even though computing a maximum independent set is NP-hard [GJ78, GJ90], the contracted
graphs are likely to be easily solved. This is due to the fact, that the contracted graphs are likely
to contain very few edges and a lot of isolated nodes. We expect it to be a rare occurrence to
have a large number of fully connected columns, as the product graph complement would have to
be extremely dense. Additionally, the contracted graphs are rather small in comparison to the
product graph complement, as the number of vertices is equal to the number of vertices of the
input graphs. We experiment on this method in Section 5.5.

Note, that both upper bounds can be modified to work in conjunction with the product graph as
well: Instead of looking for fully connected columns we instead simply have to consider independent
columns and then proceed as described.

4.2 Mapping Vertices Directly
If before the actual execution of an MCS algorithm we are able to directly map vertices of the two
input graphs onto each other, we are thus able to decrease the problem size and hence simplify the
problem. Here, we describe an approach which allows for such mappings for vertices with special
properties.

Lemma 4.2.1. Given the input graphs G1 and G2, if there are two vertices u ∈ V (G1) and
v ∈ V (G2) with µG1(u) = µG2(v) and deg(u) = deg(v) = 0, u can be mapped to v directly, and
thus both vertices can be excluded when building the product graph (-complement).

Proof. Mapping an isolated vertex u ∈ V (G1) to any vertex v ∈ V (G2) immediately excludes all
neighbors w ∈ N(v) from the solution, as no neighbor of v can be added to the solution without
violating the maximum common subgraph conditions. Therefore, if both u and v are isolated, u
can be mapped to v without loss of optimality.

This direct mapping is valid for the maximum common induced subgraph problem. If we
consider the maximum common connected subgraph problem, either u and v can be removed from
the solution and excluded from the product graph (-complement) altogether, or - if the resulting
maximum common subgraph would be empty - u and v are the only mapping in the solution.

Lemma 4.2.2. Given a vertex u ∈ V (G1), such that the label µG1(u) does not exist in G2, u can
be removed from G1.

Proof. Given that no vertex v ∈ V (G2) exists, such that µG1
(u) = µG2

(v), u cannot be mapped
onto any vertex of G2. Therefore, u can be removed from G1.

We consider a vertex u ∈ V (G1) to be effectively isolated, if ∀w ∈ N(u) : µG1(w) /∈ µG2(V (G2)).
In other words, if a vertex u ∈ V (G1) is only adjacent to vertices with labels that do not exist in
G2, u is effectively isolated, as all of its neighbors may be removed from G1.

Based on Lemma 4.2.1, Lemma 4.2.2 and the definition of effectively isolated, we arrive at the
following Corollary:
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G1

0

1

3 3

1 2

G2

0 1 4 1 2

Figure 4.2: Example where one vertex-pair can be mapped directly due to being isolated
(dotted vertices) and one vertex-pair due to being effectively isolated (dashed
vertices). The vertices are labeled with l ∈ {0, 1, 2, 3, 4}.

Corollary 4.2.1. Given the input graphs G1 and G2, if there are two vertices u ∈ V (G1) and
v ∈ V (G2) with µG1

(u) = µG2
(v) and both u and v are effectively isolated, u can be mapped to v

directly.

An example for both the mapping of isolated and effectively isolated vertices can be seen in
Figure 4.2.

Let nG1
= |V (G1)|, mG1

= |E(G1)| and analogously for G2, finding all such isolated or effectively
isolated vertices can be done in O(mG1 +mG2), assuming that it is known, which labels exist in
both graphs. This is done by iterating over all outgoing edges of a vertex, to determine whether
the label of a neighboring vertex exists in the other graph or not. Doing this for all vertices of
both graphs requires iterating over the edges of both graphs at most twice. The iteration over the
edges of a vertex can be stopped as soon as a vertex has an effective degree ≥ 1, as the vertex is
therefore not effectively isolated.

4.3 Domination Reduction
As described in Section 3.3, KaMIS employs a set of reduction rules in order to reduce the graph.
One such reduction rule is the domination rule, first described by Fomin et al. [FGK09]. A vertex
u is said to dominate a vertex v, if N [v] ⊆ N [u]. In that case, u can be removed from the graph,
as it can be replaced by v for any maximum independent set [FGK09, LSS+19].

If for two vertices u, u′ ∈ V (G1) and for all v ∈ V (G2) uv dominates u′v in the product graph
complement, the domination reduction will remove all uv. Therefore, after applying all domination
reductions, u is no longer represented in the product graph complement and can thus be removed
from G1 entirely.

If we are able to find such relationships based entirely on the input graphs alone, this may
first of all help to reduce the upper bound and secondly, it may open up new possibilities for the
direct mapping discussed in Section 4.2. However, we first need to determine how to detect such
domination relations before constructing the product graph complement. We next describe rules
which can detect some occurrences of such a domination relation.

Lemma 4.3.1. Given two vertices u, u′ ∈ V (G1) such that µG1(u) = µG1(u
′), if u dominates u′

and ∀v ∈ V (G2) : µG2
(v) = µG1

(u), and the labels of the neighbors of v are different to the labels
of the neighbors of u, uv dominates u′v in the product graph complement ∀v ∈ V (G2) and thus u
can be removed from G1.

Proof. If for two vertices u, u′ ∈ V (G1) u dominates u′, we have N [u] ⊇ N [u′] and therefore, in
G1

C N(u′) ⊇ N(u). Given the condition that for every v ∈ V (G2) which has the same label as u
and u′, the labels of the neighbors of v have to be different to the labels of the neighbors of u,
for any edge {u,w} with w ∈ N(u) \N(v), no similar edge can exist in G2, i.e. an edge where
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one endpoint has label µG1(u) and the other endpoint has label µG1(w). Therefore, computing
G1

C ×G2 cannot create edges for u′v′ with v′ ∈ V (G2) which are at the same time not inserted for
uv′ as well. In other words, for edges {u′, w} ∈ G1

C such that w ∈ N(u) \N(v), the computation
of G1

C × G2 cannot create any edges for the product graph complement Since N [u] ⊇ N [u′],
computing G1 ×G2

C inserts for u at least the same edges as for u′, and maybe some additional
edges as well. Finally, adding the row and column cliques creates the same edges for both
uv and u′v, ∀v ∈ V (G2). Putting everything together, given the conditions of Lemma 4.3.1:
∀v ∈ V (G2) : N [uv] ⊇ N [u′v], which means that all uv can be removed from PGC , and therefore
u can be removed from G1.

Therefore, we can compute such cases by computing dominations in the input graphs and
checking, if the condition is met. Computing which vertices v are dominated by a vertex u requires
comparing the neighborhoods of u and v. To do this, we iterate over the neighbors v of u and
check for each neighbor w of v, if w is a neighbor of u as well. This has a worst-case running time
complexity of O(deg(u)deg(v)), doing this for each vertex of a graph results in an overall running
time complexity of O(nm). After determining the set of vertices dominated by u ∈ V (G1), we
next need to compare the labels of the neighborhood of u with the labels of the neighborhood of all
vertices v ∈ V (G2) with µG1

(u) = µG2
(v). There can be at most nG2

= |V (G2)| such vertices, for
each vertex we compute the intersection of neighbor labels. To speed up this process, we construct
a list of frequencies of the labels of the neighbors of a vertex in advance. Therefore, computing the
intersection of the neighbor labels then simply consists of comparing these lists of label frequencies,
which requires time linear in the number L of existing labels. Combining the computational effort
for a single domination relationship results in a running time complexity of O(LnG2

). Putting
everything together, to determine which vertices of G1 can be reduced we arrive at a complexity
of O(nG1

mG1
+ n2

G1
LnG2

), as a vertex u ∈ V (G1) may dominate in the worst case nG1
vertices.

Note, that this reduction can be applied to the input graphs before running any of the approaches
discussed for solving for MCS.

4.4 Exploiting Automorphisms
As mentioned in Section 3.1.1, Koch [Koc01] notes that automorphisms frequently occur in product
graphs. However, to the best of our knowledge, nowhere in the literature it has been attempted to
exploit these automorphisms in order to reduce the search space. We thus in the following discuss
how automorphisms may be exploited in the context of MCS based on orbits (cf. Section 3.2). We
first discuss approaches to exploit automorphisms in McSplit(+RL), followed by the more general
product graph and product graph complement. In the following we will use orbit(v) to denote the
orbit in which a vertex v is located.

4.4.1 Automorphisms for McSplit and McSplit+RL
For McSplit and McSplit+RL we can exploit automorphisms for both input graphs, and thus
potentially significantly decrease the search space. Unless otherwise specified, in the following we
will only talk about McSplit, though everything applies to McSplit+RL as well.

A naïve method to exploit automorphisms is to simply compute the orbits of both input graphs
once at the beginning. Next, at every branching step, we keep track of vertices of which orbits have
already been explored at each branching state. We then simply skip over branches with vertices v,
if for there is a any vertex v′ which is located in the same orbit as v and at that branching state
the branch of v′ has been explored already.

Note, that this simple scheme does not guarantee correctness: Consider the graph depicted in
Figure 4.3. We consider that graph to be one of the input graphs and we assume the other input
graph to contain vertices with labels 0 and 1 as well. When for example vertex w is mapped, not
all vertices of orbit 2 are still equivalent to another. Therefore, it is not correct to skip branching
on vertex v0 simply because either vertex v2 or v3 where branched on already.
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0

v0 v1

w’ 0

1 1

v2 v3

w0

1 1

Orbit 1

Orbit 2

Figure 4.3: Example input graph used in illustrating possible problems with the exploitation
of automorphisms.

Recall, that McSplit changes the labels of vertices, when a vertex w is matched: vertices in the
neighborhood of w have a 1 appended to their label, whereas vertices not in the neighborhood of
w have a 0 appended to their label, and these updated labels partition the vertices into domains.
We can alleviate the issue of incorrectness, by only skipping the branching for vertices which are in
the same orbit and in the same domain. Therefore, in Figure 4.3, we would correctly differentiate
between the vertices of orbit 2. With the new domains v0 and v1 would still be equivalent to
another, and vertices v2 and v3 would still be equivalent to another. However, v0 and v1 would not
be equivalent to v2 and v3 anymore. Note, that this approach only alleviates the aforementioned
issue: Consider again the graph in Figure 4.3. If we copy and paste the graph, i.e. we have an
input graph consisting of two identical connected components, we would have the vertices labeled
1 of the duplicate-component be equivalent to vertices v0 and v1, as they would still be in the
same orbit and the same domain. However, these vertices are not equivalent to v0 and v1, as they
have no matched vertex in their connected component. Therefore, this approach still does not
guarantee correctness. We do, however, consider this approach in our experimental evaluation as a
heuristic approach and compare its running time and result quality to other approaches.

To completely fix the aforementioned issues, we need to fully recompute the automorphisms at
each branching state as to update the orbits to correctly reflect the new state of the input graphs.
Note, that recomputing the automorphisms at every branch may be very costly w.r.t. running
time. We therefore propose a heuristic algorithm for an update to the orbits using a modified
Breadth-First-Search (BFS). Our update proceeds as follows: for each vertex we keep a list of
distances to the current solution vertices. Whenever a new vertex-pair is added to the solution, we
start a BFS from both vertices in their respective graphs. For any vertex u, that is encountered
during that BFS, we add the distance of the solution vertex w to u to the distance list of u. Next,
we hash that list of distances together with the original orbit number of u to arrive at a new orbit
number. This algorithm is depicted in Algorithm 2.

Every time we go back up a level in the branching tree, we remove the last distance from the
list of each vertex. For this algorithm we assume a collision-free hash function. Again consider the
graph in Figure 4.3: With this algorithm, after mapping w, vertices v0 and v1 are still equivalent
with a new orbit number and v2 and v3 are equivalent as well, again with a new orbit number. If
we had again a duplicate of the graph as a second connected component, all other vertices with
label 1 would remain unchanged in their original orbit.

Given the graph in Figure 4.4 we can clearly demonstrated the limitations of this approach:
Consider vertices v1 and v2 are matched. The vertices of orbit 2 would be correctly separated
due to the vertices residing in different domains. However, the vertices w and w′ of orbit 1 would
retain their equivalence with this update algorithm. Both vertices are non-adjacent to the vertices
in the solution, thus their domains are equivalent, and the list of distances to the solution vertices
is for both w and w′ {2, 3}. Therefore, this heuristic would still treat w and w′ as equivalent,
whereas the vertices are clearly not equivalent anymore.

For McSplit we introduced three different variants of exploiting automorphisms. First, the
simple heuristic exploitation skips branching on a vertex v, if there is another vertex v′, such that
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Algorithm 2: Pseudo-Code depicting the update of orbit association using a
modified BFS
Data: G,D,w
Result: updated orbits for all vertices

1 S ← {w} // Keeping track of which vertices we already visited
2 Q← {w} // Queue for BFS
3 // To compute the distance of a vertex u from w
4 ∀u ∈ V (G) : du ← 0
5 while v ∈ Q do
6 Q← Q \ {v}
7 forall u ∈ N(v) : u /∈ S do
8 du ← dv + 1
9 Q← Q ∪ {u}

10 S ← S ∪ {u}
11 end
12 Dv ← Dv ∪ {dv}
13 orbit′(v) ← hash(Dv, orbit(v))
14 end
15 return orbit′

w’ w0 0

v1

0

1

2

v2

0

1

2

Orbit 1

Orbit 2

Orbit 3

Orbit 4

Figure 4.4: Example input graph illustrating a possible problem with the BFS orbit update
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1 1

0 u

2

1 1

Orbit 1

Orbit 2

Figure 4.5: Example product graph complement with non-trivial orbits drawn in.

v and v′ are in the same orbit and in the same domain and branching occurred on v′ already. This
approach requires overhead in time linear in the number of vertices of the input graphs at each
branching step, however, out of our three approaches, this approach may lead to the most inexact
automorphism exploitations. In the experimental evaluation we refer to this approach as autom.
heuristic. Next, the approach utilizing a modified BFS to update orbit associations requires the
computation of two BFS at each branching step and thus in the worst-case takes O(n+m) time
for each input graph. However, this approach is a better approximation than the simple heuristic
discussed before. We refer to this approach as autom. bfs update in our experimental evaluation.
Finally, to obtain an exact exploitation of automorphisms, we suggest to recompute the orbits at
each branching step at the expense of additional running time. In the experimental evaluation we
refer to this approach as autom. nauty recomp. In Section 5.7 we compare these three variants
with regards to running time as well as result quality.

4.4.2 Automorphisms of the Product Graph Complement

As demonstrated in the previous section, to exploit automorphisms correctly, we either need to
fully recompute the automorphisms at each branching state or perform an update operation. Both
methods can be applied to the product graph complement as well, in order to ensure optimality.
However, we again discuss a simple heuristic approach, which we then experimentally evaluate in
Section 5.7. We first describe some properties of orbits. Given two orbits i and j, there may be
some edges between the vertices of the orbits or the orbits may be completely independent. Due
to the orbits representing equivalence classes, it suffices to pick a single representative vertex u of
orbit i and investigate if and how many edges u has to the vertices of orbit j. If that vertex u has
no edges to the vertices of orbit j, no other vertex of orbit i can have edges to vertices of orbit j
either. We can therefore efficiently determine the relationship between any two orbits.

Regarding our heuristic exploitation of automorphisms, we now only allow a branch to be
skipped, if the orbit of the branching vertex is completely independent from the orbits of vertices
currently in solution. Similar to the automorphism exploitation in McSplit(+RL), this constraint
poses an improvement over the straight-forward skipping of branches such that fewer inexact
exploitations occur. As an example consider the product graph complement in Figure 4.5: There
are two non-trivial orbits as well as two trivial orbits. Assume that vertex u is put into the solution.
As orbit 2 is independent of the trivial orbit of vertex u, we only branch on one vertex of orbit 2
at that branching state.

To use this scheme, we first need to determine the relationships between orbits, which in
the worst-case requires iterating over all edges of the product graph complement, therefore has
worst-case complexity of O(m). During the branching, we need to look up the relationship between
the orbit of a branching vertex u and the orbits of vertices currently in solution. This can be done
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in time linear in the size of the solution.
Note, that a similar approach can be applied to the product graph: Instead of requiring orbits

to be independent, we require orbits to be fully connected. This condition can again be determined
in worst-case time O(m), as it again suffices to pick a representative of an orbit and check its
edges. In Section 5.7 we evaluate the running time and result quality of this heuristic approach.

4.5 Initial Scores for Reinforcement Learning
With every instantiation of McSplit+RL on a pair of input graphs, the algorithm starts off with
an initial score of 0 for each vertex. In this section we describe two different approaches which
may be used to assign an initial score to vertices, based on information about their neighborhood
and the likeness of vertices to the vertices of the other input graph.

We first discuss an approach utilizing the Weisfeiler-Leman algorithm. In our approach, we
modify the Weisfeiler-Leman algorithm to run for up to k iterations or until a stable labeling is
achieved. This yields a set of up to k + 1 labels for all vertices of both graphs, up to k labels from
Weisfeiler-Leman plus one initial label. Let Lj denote the number of vertices of G2 with label j
and let λ(u)i denote the i-th label of a vertex u ∈ V (G1) w.r.t. to the Weisfeiler-Leman algorithm.
Then the score su of a vertex u is computed as follows:

su =
∑︂
i

Lλ(u)iwi (4.2)

where wi denotes a weight parameter, by which the score of an iteration is weighted. The score of a
vertex u is calculated by a weighted sum of the number of vertices with matching label in the other
input graph. As matching labels in the i-th iteration indicate identical i-hop neighborhood, it
seems only natural to increase the weight parameter with the iteration, we suggest setting wi = 2i.
Note, that Weisfeiler-Leman requires identical neighborhoods in order to result in the same label.
However, in reality it is more likely, that the neighborhoods are similar, but not identical. Therefore,
we suggest an additional approach based on the Jaccard-Index, which computes a score for the
similarity of sets. The Jaccard-Index is defined on two sets A and B as follows:

J(A,B) =
|A ∩B|
|A ∪B|

(4.3)

i.e. the size of the intersection of the two sets normalized by the size of their union [Jac12]. Thus
the Jaccard-Index is a real number between 0 and 1.

For our application, we can choose the sets A and B to be multi-sets containing the labels of
the closed neighborhood of two vertices and thus compute a similarity measure for two vertices.
However, we can take it a step further and allow this similarity computation to take place over
a number of iterations and by that consider not only the immediate neighborhood, but the
neighborhood of the neighbors as well. To accomplish this, we start off by encoding the label
of each vertex u into a vector x

(0)
u of size L, where L denotes the number of existing labels in

both input graphs. We only set the vector entry corresponding to the label of a vertex to 1, all
other entries are set to 0 (this is called a one-hot encoding). Next, for every iteration i ∈ [1..j],
we compute a new vector x

(i)
u for each vertex u, which is computed as

∑︁
∀v∈N(u) x

(i−1)
v , i.e. the

summation of the vectors of the previous iteration of all of u’s neighbors. After each iteration we
update the score su of u with these vectors using a slightly modified definition of the Jaccard-Index,
as we are working on vectors here and not on sets:

JW (xu, xv) =

∑︁
l min (xu[l], xv[l])∑︁
l max (xu[l], xv[l])

(4.4)

where xu[l] represents the l-th element of the vector xu. This modified Jaccard-Index is known as
the Ruzicka similarity [War16]. See Algorithm 3 for a pseudo-code representation of the algorithm.

Using either the Weisfeiler-Leman or our Jaccard method we arrive at initial scores for each
vertex, which are dependent on the similarity of a vertex to vertices from the other input graph.
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Algorithm 3: Pseudo-Code depicting the computation of initial scores for Mc-
Split+RL using the Jaccard-Index
Data: G1, G2, k
Result: initial scores s for all vertices

1 // vector of size L, where L denotes the number of labels in the
input graphs

2 ∀u ∈ V (G1) : x
(0)
u ← ⟨0 · · · 0⟩

3 ∀v ∈ V (G2) : x
(0)
v ← ⟨0 · · · 0⟩

4 forall u ∈ V (G1) do
5 su ← 0

6 x
(0)
u [µG1(u)]← 1

7 end
8 forall v ∈ V (G2) do
9 sv ← 0

10 x
(0)
v [µG2(v)]← 1

11 end
12 for i = 1 to k do
13 forall u ∈ V (G1) do
14 x

(i)
u ←

∑︁
∀u′∈N(u) x

(i−1)
u′

15 end
16 forall v ∈ V (G2) do
17 x

(i)
v ←

∑︁
∀v′∈N(v) x

(i−1)
v′

18 end
19 forall u ∈ V (G1) do
20 forall v ∈ V (G2) : µG1(u) = µG2(v) do
21 su ← su+ JW(x(i)u , x

(i)
v )

22 sv ← sv+ JW(x(i)u , x
(i)
v )

23 end
24 end
25 end
26 return s
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4.6 Speeding up KaMIS for MCS
In this section we discuss some modifications we propose for KaMIS [LSS+19], as to optimize for
the MCS problem setting. We first discuss a modification of the Local Search heuristic solver of
KaMIS. As discussed in Section 3.3, the Local Search performs a fixed number of iterations, where
the algorithm tries to improve the current solution. By default, KaMIS performs 1 million such
iterations, which can be very time consuming. We therefore propose a modification, which limits
the number of iterations based on when the solution was last increased.

Our first approach is a simple improvement limit T , which dictates the maximum number of
iterations taken after the solution has been updated to a larger solution. If within these T iterations
a larger solution is found, the algorithm again has a budget of T iterations to further increase
the solution. Once the T iterations have been exhausted, the algorithm is forced to terminate.
This fixed size limit may still cause a large number of iterations performed on simpler instances,
without any improvement. We therefore additionally introduce an adaptive limit A, with A ≪ T .
As with T , the algorithm is limited to A iterations after finding a larger solution, however, with
the adaptive limit we double A every time a larger solution is found, as the algorithm is more
likely to require more steps to find even larger solutions. To limit the size of A, A can be increased
to at most T . This approach has the benefit of keeping the number of iterations taken smaller for
simpler instances, where only few improvement steps are needed. For an experimental evaluation
of these limits see Section 5.4.1.

Next, we propose a change to the reductions employed by the Branch-And-Reduce solver
throughout execution as well as by the Local Search at the beginning. In its original form, KaMIS
offers two different reduction styles: One style for dense graphs and one style for sparse graphs.
These two styles differ in which reductions are applied to the graph, with the sparse style being a
super-set of the dense style. However, some reductions may be cost prohibitive w.r.t. running time
in the context of MCS. Additionally, some of the reductions used in KaMIS rely on the weight of
a vertex being larger than the weight of its neighborhood (neighborhood reduction), which can
never apply in our unweighted product graph complement and therefore we can safely disable such
reductions. Next, we note that the order in which the reductions are applied matters: KaMIS
keeps a list of the reductions, attempting to apply them one after the other. As soon as some
reduction was applied successfully, KaMIS restarts at the beginning of the list. Thus reductions
at the front of the list will be tried more often. In preliminary experiments we notice that the
domination reduction applies successfully most often, therefore we propose to put that reduction
to the front of the list. Next in the list, we put the clique reduction, followed by the fold and
twin reductions. See Section 5.4.2 for an experimental evaluation of our reduction style versus the
original two styles.

4.7 Summary
Our contributions presented in this chapter are manifold, though some of the techniques may
only be applied to specific solvers. Table 4.1 gives a brief summary of our contributions, showing
for which kind of algorithms our techniques may apply. We presented two techniques, which are
algorithm-agnostic and as such may be applied to any approach, namely the mapping of vertices
and the domination reduction. Both techniques can simply be applied to the input graphs before
the actual MCS algorithm is run. Other techniques are tailored to given solvers, such as the
initial scores for McSplit+RL, the reduction style for KaMIS solvers or the iteration limit for the
Local Search solver of KaMIS. Finally, the exploitation of automorphisms may be applied to many
solvers, in this work we presented means of exploiting automorphisms for solvers operating on the
product graph (-complement) as well as for McSplit(+RL).
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Suggested Technique Applicable Solvers Reference
Improved upper bounds any solvers operating on the product graph (-

complement)
Section 4.1

Mapping of vertices any solver Section 4.2
Domination reduction any solver Section 4.3
Exploitation of auto-
morphisms

McSplit(+RL) as well as solvers operating on the
product graph (-complement)

Section 4.4

Initial scores McSplit+RL Section 4.5
KaMIS reduction style Branch-And-Reduce and Local Search solvers of

KaMIS
Section 4.6

Iteration Limit Local Search solver of KaMIS Section 4.6

Table 4.1: An overview of the techniques suggested in this chapter and to which existing
algorithm each technique may be applied.
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5 Experimental Evaluation
In this chapter we evaluate our approaches experimentally and compare the different approaches.
The remainder of this chapter is structured as follows. First, we describe our methodology and
experimental environment. Next, we discuss the instances, on which we run our experiments,
followed by an analysis of the product graph complement densities for the instances used. We
follow by evaluating our changes made to the KaMIS solvers specifically for the MCS problem, as
well as an evaluation of the tight bound and domination reduction. Next, we evaluate the initial
scoring methods for McSplit+RL and evaluate the performance against the baseline algorithm.
Following that, we discuss the exploitation of automorphisms, both for McSplit (McSplit+RL) as
well as for the Branch-And-Reduce solver of KaMIS. Finally, we perform an overall comparison of
the best competitors found in the aforementioned evaluations and evaluate their running time and
result quality performance against a state-of-the-art clique solver.

5.1 Environment and Methodology
For our experiments, we utilize an Ubuntu 18.04.5 machine running kernel version 4.15.0-106-generic.
The machine consists of eight AMD Opteron™ 6174 processors, with six cores each. Each processor
has 512 kB and 5118 kB of L2 and L3 cache, respectively. The machine has a NUMA architecture,
meaning that out of the 256GB of RAM available in total, each processor only has 32GB of RAM
available locally. To prevent the added cost of accessing non-local memory, all experiments are
pinned to a single processor and its locally available memory.

In our experiments, we use the Local Search and Branch-And-Reduce solvers from KaMIS
[LSS+19] 1 in version 2.0, McSplit [MPT17] 2, McSplit+RL [LLJH20] 3 as well as the clique solver
MoMC [LJM17] 4. For computing the automorphisms, we utilize nauty [MP14] 5 in version 2.7r1.
All code is written in C++11 and compiled with gcc 7.5.0 with full optimization enabled (O3).
The only exception is nauty, which is written in C.

We run each experiment once, as the differences in running time would not be sufficiently large
as to influence the overall pictures. We only report the running times of the algorithms, IO times
are thus not included in the running time. All experiments are given a maximum of 1000 seconds
time, after which the best result found so far is reported. To compare the various approaches,
we compare the cumulative number of instances solved within 1000 seconds as well as the result
quality obtained.

5.2 Instances
Following the methodology of McCreesh et al. [MPT17], we experiment on sets of randomly
generated subgraph isomorphism graphs due to Santo et al. [SFSV03] and Conte et al. [CFV07].
These instances are grouped into two categories: Unlabeled and undirected instances (mcsplain),
as well as directed, edge- and vertex labeled instances (mcsved). All of these instances can be found
in the McSplit code repository 6, along with predefined pairings of input graphs to use as the inputs

1https://github.com/KarlsruheMIS/KaMIS
2https://github.com/jamestrimble/ijcai2017-partitioning-common-subgraph
3https://github.com/JHL-HUST/McSplit-RL
4https://home.mis.u-picardie.fr/~cli/EnglishPage.html
5https://pallini.di.uniroma1.it/
6https://github.com/jamestrimble/ijcai2017-partitioning-common-subgraph
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5 Experimental Evaluation

Instance Group min n max n avg. n min m max m avg. m avg. density

AIDS 2 95 15.92 2 206 32.90 2.02
COX2 32 56 41.24 68 118 86.91 2.11
proteins 4 620 38.57 10 2098 143.56 3.73
mcsplain 15 50 35.00 38 898 181.12 5.01
mcsved 40 100 75.40 59 450 167.76 2.16

Table 5.1: Properties of the instances used in the experimental evaluation.

to experiments. For our experiments, we run the first 500 of these instances of both categories. We
additionally include real-world instances sourced from TUDatasets [MKB+20], which are undirected
and vertex labeled. These instances represent proteins and small molecules, where AIDS represents
molecules from research for fighting against the disease and COX2 represent molecules, which bind
to cyclooxygenase enzymes. As with the McSplit instances, we run experiments on the first 500 of
these pairs. An exception are the COX2 instances, where we only have a list of 233 instance pairs,
due to the smaller number of graphs.

See Table 5.1 for an overview of the instances attributes. We can clearly see that proteins has
the largest overall instance by far in terms of number of vertices and number of edges, whereas
on average the largest instances are in the mcsved set with regards to number of vertices. AIDS
has some very small instances, consisting of only 2 vertices and on average the instances are the
smallest as well. The mcsplain instances have the highest density. All COX2 are fairly similar in
size, with the number of vertices only ranging from 32 to 56.

5.3 Product Graph Complement Density

We first investigate the densities of the product graph complement, as the density heavily influences
the Branch-And-Reduce and Local Search solvers. Figure 5.1 shows the density for all five instance
sets, along with a color-encoding of the overall maximum result found for these instances. The
density is computed as the number of existing edges divided by the maximum number of possible
edges. We first of all observe a negative correlation between the density and the number of
vertices: For all instance sets there is a downward trend of the density with increasing number
of vertices. Next, we observe that the two instance sets AIDS and proteins have product graph
complement graphs which widely vary in density. For both sets, some instances lead to almost
complete graphs, whereas some instances have a density of 0.1 or less. The densities of COX2 and
mcsved instances vary fairly little, most graphs have a density between 0.05 and 0.3. And finally,
the mcsplain instance set is somewhere in between, the density ranges from about 0.15 to 0.55.
With the color encoding of the maximum solution size found overall, we additionally observe a
negative correlation between solution size and number of vertices: With larger number of vertices,
the solution size increases as well. Additionally, for mcsplain we can observe that the density
negatively corresponds to the solution size, with sparser instances reaching larger solutions.

5.4 KaMIS Improvements

In this section we experimentally evaluate the improvements made specifically to KaMIS, as
discussed in Section 4.6. We start by comparing various iteration limits with the default limit of
one million iterations for two data sets for the Local Search solver. We follow by comparing our
new reduction style with the default styles for the Branch-And-Reduce solver.
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Figure 5.1: Density of the product graph complement graphs for all instance sets.
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5.4.1 Local Search Iteration Limit

We first compare the iteration limits. For this, we experiment with various configurations for
all instance sets, with the aim to find a good configuration, which provides a suitable trade-off
between speedup and result quality, when compared to the baseline Local Search algorithm.

For AIDS instances, we experimented on various configurations based on some preliminary
experiments, starting with A = 125 and T = 4000 up to A = 175 and T = 5 000. Figure 5.2a gives
a comparison of the running time of the various configurations and the baseline algorithm. On the
y-axis we have the cumulative number of instances solved and on the logarithmic x-axis we see the
running time in seconds. As we can see in Figure 5.2a, all of these configurations with iteration
limits significantly outperform the default Local Search behavior in terms of instances solved over
time, though the difference among the four configurations is comparatively small. However, when
we look at Figure 5.2b, we can observe a difference in the result quality. This figure shows how
well a given approach has solved the instances, relative to the maximum solution achieved by any
approach we investigate. On the x-axis we have a relative distance t to the maximum result MAX
and on the y-axis we see the relative number of instances that were solved to at least t×MAX.
The further to the top left any approach is, the better.

With respect to result quality (Figure 5.2b) the baseline version of the Local Search achieves
the overall maximum result on all instances, therefore it would only be represented as a dot
in the top left corner. Comparing the various configurations with iteration limits, we see that
the configuration with A = 125 and T = 4000 performs slightly worse, whereas the other three
configurations yield the exact same results. However, considering we overall ran on 500 instances,
achieving the maximum on 99.2% of these instances means that for only four instances this
configuration yielded a smaller result, whereas for 99.4% we find the maximum solution for 497
instances and only three instances are solved worse. In the worst-case, the result quality drops
down to roughly 86% of the maximum solution found. Given how close all configurations are in
terms of running time, we therefore conclude that the configuration with A = 150 and T = 4000
yields the best trade-off in terms of speed and result quality.

Next, we look at COX2 instances, where finding good configurations has proven to be challenging.
Remember, that the default behavior of the Local Search algorithm is to perform one million
iterations. As we can see in Figure 5.3b, an increase of T to 500 000 and A to 15 000 is necessary
in order to get reasonably close to the result quality of the baseline algorithm. Even then, there
are overall still four instances, where the baseline algorithm finds larger results. For T = 200 000
and A = 6000, we observe overall eight instances, where the result quality is smaller than that
found by the baseline algorithm. Further down, with T = 100 000 and A = 3000 there are 14 such
instances. Regarding the running time, we can see in Figure 5.3a that the baseline algorithm is
very slow, taking over 100 seconds to solve most instances, whereas the variants with iteration
limits perform better, though not as significantly as they did for AIDS instances. For our final
evaluation we could use the configuration with 500 000 and A to 15 000, as the quality is very close
to the baseline. However, the running time performance is still very poor. We thus propose the
configuration with T = 200 000 and A = 6000, as the running time is significantly better and the
result quality only drops for further four instances compared to the other configuration.

For proteins instances, we experimented on configurations with T between 10 000 and 30 000
iterations. Similarly to AIDS instances, here we again see a significant improvement in running time
(Figure 5.4a), whilst achieving similar or only slightly worse result quality (Figure 5.4b). More
specifically, the baseline algorithm takes 100 seconds or more for most instances and the algorithm
times out for more than half the instances. Whereas with the iteration limits, the algorithm only
times out on a few instances and the overall running time performance is faster. Regarding the
result quality, the configuration with T = 30 000 and A = 100 leads to a smaller result on seven
instances, when compared to the baseline. The next smallest configuration with T = 25 000 and
A = 750 there are eight instances, which result in a smaller solution size, for T = 20 000 and
A = 625 as well as T = 10 000 and A = 300 it is 11 and 16 instances, respectively. For the overall
comparison we thus chose the configuration T = 30 000 and A = 1000, as it provides a good
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Figure 5.2: Comparison of running time and solution quality on AIDS instances for various
different iteration limits for the Local Search solver.
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Figure 5.3: Comparison of running time and solution quality on COX2 instances for various
different iteration limits for the Local Search solver.
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Figure 5.4: Comparison of running time and solution quality on proteins instances for
various different iteration limits for the Local Search solver.
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Instance Group A T

AIDS 150 4 000
COX2 6 000 200 000
proteins 1 000 30 000
mcsplain 10 000 300 000
mcsved 1 250 40 000

Table 5.2: Configurations used for Local Search throughout the remainder of the experi-
mental evaluation.

trade-off between speed and quality.
Next, we look at different configurations for the mcsplain instances. Here, preliminary experi-

ments showed, that the number of iterations again has to be much higher than for AIDS instances.
We therefore compare various configurations ranging from T = 65 000 to T = 300 000. Looking
at Figure 5.5a, we immediately see, that the mcsplain instances pose a challenge to the Local
Search, no instance is solved within less than five seconds, even for the smallest configuration.
Additionally, the baseline algorithm requires at least 300 seconds per instance and only manages
to solve less than 100 instances within the given timeout. If we now look at the result quality in
Figure 5.5b, we see that the configuration with T = 300 000 and A = 10 000 performs very similarly
to the baseline algorithm, in fact there are only three instances, for which this configuration
achieves smaller results than the baseline algorithm. On the other end of the scale we have the
configuration with T = 65 000 and A = 2000, which performs significantly worse than the baseline
algorithm, achieving smaller results for a total of 65 instances. For the other three configurations -
with increasing T - the number of instances, for which that configuration achieves smaller results
than the baseline, are 42, 31 and 18. This again indicates the difficulty of the mcsplain instances.
Given these results, we opt to use the configuration, which provides the best result quality, which
is the configuration with T = 300 000 and A = 10 000.

Finally, we consider various configurations for mcsved instances. Here, we experiment on
configurations with T ranging from 15 000 to 50 000. If we first look the running time performance
in Figure 5.6a, we again observe a significant boost in running time compared to the baseline
algorithm. The various configurations are able to solve all instances within 20 seconds or less,
whereas the baseline algorithm takes up to 750 seconds. Regarding the result quality, we see
in Figure 5.6b, that the configuration with T = 15 000 and A = 500 performs rather poorly in
comparison, achieving a smaller result than the baseline on 18 instances. On the upper end, the
configurations with T = 50 000 and A = 1500 as well as T = 40 000 and A = 1250 find smaller
results on seven instances compared to the baseline. We therefore know, that increasing the limit
T from 40, 000 to 50, 000 and A from 1 250 to 1 500 is not enough to increase the result quality.
Therefore, we additionally tried a configuration of T = 60 000 and A = 2000, however, the quality
still remained unchanged. Given the significant boost in running time and the overall good result
quality of the configuration T = 40 000 and A = 1250, we choose this configuration for the overall
evaluation.

Table 5.2 gives an overview of the configurations we decided on for the different instance groups.
To confirm that our limits are not over fitted to the instances at hand, we performed additional
experiments on previously unseen AIDS and mcsplain instances, where we compare the result
quality and running time of the baseline algorithm with the chosen configuration for the instance
set. Note, that we only run the Local Search solver on these unseen instances, therefore the overall
maximum found solution is equal to the solution found by the baseline Local Search algorithm.

First, we look at the comparison for AIDS instances between the chosen configuration of T = 4000
and A = 150 versus the baseline algorithm. We can see in Figure 5.7a, that the running time
comparison looks almost identically to that of Figure 5.2a, with the variant with iteration limit
significantly outperforming the baseline. Similarly, the picture painted by Figure 5.7b is very
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Figure 5.5: Comparison of running time and solution quality on mcsplain instances for
various different iteration limits for the Local Search solver.
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Figure 5.6: Comparison of running time and solution quality on mcsved instances for
various different iteration limits for the Local Search solver.
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Figure 5.7: Comparison of running time and solution quality on previously unseen AIDS in-
stances for the chosen iteration limit configuration versus the baseline algorithm
of Local Search.
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similar to that of Figure 5.2b, with the baseline algorithm achieving a larger result on only two
instances. We have thus confirmed, that our chosen configuration for AIDS instances is not over
fitted to the given data, but rather seems generally applicable to all instances from that set.

Next, we perform a similar comparison for mcsplain instances, where we again ran both the
baseline and the configuration of T = 300 000 and A = 10 000 and compare their results. The
running times of both variants are shown in Figure 5.8a, we again observe a drastic speed-up over
the baseline algorithm. More importantly, though, is the result quality of the variant with iteration
limits compared to the baseline. We can see the comparison of quality between the two variants in
Figure 5.8b. The plot clearly shows, that the difference in quality between the baseline and the
variant with iteration limits is very small, there are only four instances, for which the result of
the baseline is larger. As with the configuration for AIDS instances we thus clearly see, that the
chosen configuration is not over fitted to the test data and applies to unseen instances as well.

Given these results, we apply the appropriate configurations for the experiments used in the
overall comparison in Section 5.8. If no prior knowledge about the input data exists, it is difficult
to estimate a suitable configuration. Therefore, we recommend to always perform experiments on
a subset of instances in order to understand, which configurations may be suitable.

5.4.2 Branch-Reduce

Next, we investigate the difference in running time of the Branch-And-Reduce solver when using
our MCS specific reduction style, versus the default styles. For this experiment, we look at all
instance groups.

We first investigate the difference in running time and result quality for AIDS instances. Looking
at Figure 5.9, we can clearly observe that our MCS specific reduction style outperforms both
default styles. Many more instances can be solved within one second or less with the new style
compared to the default styles. We observe that for more difficult instances, the running times
of the dense and our custom style converge. The sparse reduction style performs worst overall,
it is significantly outperformed by the other two styles. This again confirms that the product
graph complement for AIDS instances is mostly dense. If we consider the result quality, there is no
difference between the quality of all three styles, even though with the sparse reduction style more
instances time out.

Next, looking at the COX2 instances, we see in Figure 5.10a that our reduction style is again
mostly faster than the two built-in styles. However, for this instance group the difference in
running time is less pronounced. Interestingly, the sparse style is again outperformed by the dense
style, and the running times of difficult instances for the dense and our custom style again converge.
This suggests, that the dense reductions can be applied successfully more often than the other two
reductions styles, even though the instances are comparatively sparse. And indeed, an analysis of
the raw output data shows that the reductions of the dense style can be applied significantly more
often than the reductions of the other two styles.

If we now look at the result quality for this instance set, we observe in Figure 5.10b a difference
in quality between all three styles: The dense reduction style leads to overall slightly better quality
than our MCS style, and the sparse style results in the worse quality. The dense style achieves
a larger result on two additional and ten additional instances compared to the MCS and sparse
styles, respectively.

For the proteins instances, we can see the running time comparison in Figure 5.11a. We
observe that overall our custom style outperforms the other two styles significantly, far more
instances can be solved within 10 seconds or less compared to the other styles. However, for more
difficult instances, the performance of our custom style and the dense style are very similar, whilst
the sparse style performs worse overall. In terms of result quality, we can see in Figure 5.11b, that
our custom style and the dense style achieve identical result quality, whilst the sparse style leads
to slightly worse quality, there are three instances where the sparse style leads to a worse result
than the other two styles.

Next, we look at the results for mcsplain instances, where we can see the running time
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Figure 5.8: Comparison of running time and solution quality on previously unseen mcsplain
instances for the chosen iteration limit configuration versus the baseline al-
gorithm of Local Search.
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Figure 5.9: Instances solved over time on AIDS for the Branch-And-Reduce solver using
different reduction styles.

comparison in Figure 5.12a. We can clearly see, that again our custom style outperforms the two
default styles. Additionally, here the sparse style performs significantly worse, requiring at least
400 seconds to solve an instance, whereas our custom style and the dense style can solve instances
within 1 and 20 seconds, respectively. In terms of result quality, we again observe identical quality
for our custom and the dense styles, as can be seen in Figure 5.12b. And again, the sparse style
performs worse, here there are a total of 45 instances for which the sparse style finds worse results
compared to the other two styles.

Finally, we compare the three styles on mcsved instances. Figure 5.13a shows the running time
performance, where we for the first time observe almost identical running time performance for
the dense style and our custom style. Again, however, the sparse style performs significantly worse.
For this instance set, this is again surprising, as the instances are mostly sparse, therefore we
would expect to see the sparse style outperforming the dense style. In terms of result quality,
Figure 5.13b shows a slight difference between our custom and the dense style: There is a single
instance, where the dense style achieves a larger result. Again, the sparse style performs worst
than the other two styles, here it achieves a smaller result on four instances compared to the dense
style.

Overall, we consider the MCS reduction style to be superior, as the running time clearly improves,
whilst the result quality at the worst case suffers slightly. We therefore from now on always activate
our new reduction style for the Branch-And-Reduce as well as Local Search solvers of KaMIS.

5.5 Tight Bound and Domination Reduction

In this section we discuss the improvements made by the tight bound (Section 4.1) and the
domination reduction (Section 4.3). For our experimental evaluation, we implemented both
methods within KaMIS, therefore our discussion focuses on KaMIS. Note, that the domination
reduction could be applied to any solver, and the tight bound could be applied to any approach,
which utilizes either the product graph or its complement. For the tight bound, we couple both
methods described in Section 4.1 into one, as the independent set method should only be used
together with a fallback method anyways. We additionally discuss the direct mapping described
in Section 4.2 where applicable, as we implemented that for KaMIS as well and activated it per
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Figure 5.10: Comparison of running time and solution quality on COX2 instances for the
Branch-And-Reduce solver using different reduction styles.
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Figure 5.11: Comparison of running time and solution quality on proteins instances for
the Branch-And-Reduce solver using different reduction styles.
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Figure 5.12: Comparison of running time and solution quality on mcsplain instances for
the Branch-And-Reduce solver using different reduction styles.
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Figure 5.13: Comparison of running time and solution quality on mcsved instances for the
Branch-And-Reduce solver using different reduction styles.
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default. For this evaluation, we only experiment on the AIDS and COX2 instances, as these present
an ideal case for the upper bound and reductions, due to the many different vertex labels.

In Figure 5.14 we compare the number of instances solved over time for both AIDS and COX2
instances when enabling either the tight bound or the domination reduction versus a baseline. For
this experiment we chose these two instance groups, as they typically consist of many different
labeled vertices, which is beneficial for both the domination reduction and the upper bound
computation.

We can clearly observe, that both the tight bound and the domination reduction have little
effect on the overall running time of the Branch-And-Reduce solver of KaMIS. Looking at the raw
data, we see 68 domination reductions across 50 AIDS instances, and no reductions on the COX2
instances. If we now look at how often the direct mapping is applied for the AIDS instances, we
see 27 occurrences with the baseline version. However, with the domination reduction, the direct
mapping occurs an additional 17 times, for a total of 44 invocation across all AIDS instances. For
the COX2 instances, the direct mapping never occurs at all.

Regarding the upper bound, with AIDS we observe 41 instances, where the bound was reduced,
out of those for 21 instances the bound was reduced by the independent set bound. For COX2
instances, the bound was reduced on 31 instances, with 8 instances being reduced by the independent
set. The updated upper bound was equal to the optimal solution on ten AIDS instances and no
COX2 instance. For the instances, where the new upper bound was equal to the optimum, the
data suggests that these instances where fairly easy so solve anyways, which is why there is little
difference in running time.

Even though neither the domination reduction nor the improvement upper bound yield a
noticeable improvement in running time, we nonetheless activate both for all subsequent KaMIS
experiments, as it does not affect the running time negatively.

5.6 McSplit+RL Initial Scores

We now investigate the use of Weisfeiler-Leman and Jaccard-Index for initial scoring for Mc-
Split+RL. Note, that the Weisfeiler-Leman scoring requires identical labels and thus identical
neighborhoods. In preliminary experiments we discovered, that labels almost never match after the
third iteration of Weisfeiler-Leman, we therefore limit this approach to three iterations. For the
scoring based on the Jaccard-Index, the scores may increase for any arbitrary number of iterations.
However, too many iterations are not useful either, as the additional over-head of computing
these iterations increases and thus may overall slow down the execution. We therefore compare
the results for i ∈ [2..5] iterations. For our comparisons, we perform experiments on all instance
groups.

First we take a look at the influence of the initial scores for the AIDS instance group. If we look
at Figure 5.15a we see very little difference between the baseline McSplit+RL runs and the various
initial scoring configurations. We notice three configurations, namely with Weisfeiler-Leman as
well as 3 and 4 iterations of the Jaccard-Index, which are able to solve a single instance slightly
faster than the baseline algorithm. However, the remainder of the running time is very close. If
we now look at the result quality in Figure 5.15b, we observe a noticeable difference between the
configurations: With 5 iterations of the Jaccard-Index, we observe the overall best quality, the
Weisfeiler-Leman configuration and 3 iterations of the Jaccard-Index perform very similarly, albeit
slightly worse than 5 iterations. With 2 and 4 iterations, we notice mostly superior quality to
the baseline algorithm as well, except for one single instance, where the quality of the baseline
algorithm is slightly superior.

Next, we compare the configurations with the baseline algorithm on the COX2 instances. As
we can see in Figure 5.16a, we observe a drastic difference between the various initial scoring
configurations and the baseline algorithm. While the baseline algorithm times out on one instance,
all initial scoring configurations finish all instances within roughly 110 seconds, significantly
outperforming the baseline. More significantly, the baseline algorithm computes the optimum
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Figure 5.14: Tight Bound and Domination Reduction on two instance groups
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Figure 5.15: Comparison of running time and solution quality on AIDS instances for different
initial scoring methods for McSplit+RL.
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Figure 5.16: Comparison of running time and solution quality on COX2 instances for different
initial scoring methods for McSplit+RL.
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result for 176 instances within less than one millisecond, whereas all configurations with initial
scores finish about 205 instances within that time frame. Comparing the various configurations
among themselves, we notice very similar running times, with Jaccard-Index with 2 and 4 iterations
slightly outperforming the other approaches. Here, we again see very similar running times for
the Weisfeiler-Leman scores as well. Looking at the result quality, the configurations with initial
scores never time out and thus find the optimal solution for all instances, whereas the baseline
algorithm times out on one instance and does not find the optimum on that instance, which is
reflected in Figure 5.16b.

If we consider the proteins instances, Figure 5.17a shows, that the baseline algorithm performs
very similarly, overall slightly better even than the variants with initial scores. Though the
differences in running times are quite small. However, looking at Figure 5.17b, we observe a
noticeable difference in result quality: The baseline algorithm solves at least one more instance to
the maximum overall than all initial score configurations. Overall, however, the configurations
with 3 and 4 iterations of Jaccard-Index achieve the best quality.

Next, we look at the mcsplain instances. Here, Figure 5.18a clearly shows that the baseline
algorithm is consistently faster than any of our configurations, however, the difference in running
time is again quite small. Interestingly, when looking at Figure 5.18b we see, that the baseline
algorithm solves fewer instances to the maximum result any of our configurations. Overall, however,
the baseline algorithm achieves the best worst-case result quality, with at the worst-case achieving
at least 0.916 times the maximum value found. With 4 iterations of Jaccard-Index we achieve the
second best worst-case quality, achieving at the worst-case 0.9 times the size of maximum result.
If we look at absolute numbers, the baseline algorithm finds larger solutions on 24 instances than
the configuration with 4 iterations of Jaccard-Index, however, the baseline algorithm finds smaller
solutions on 39 instances. Interestingly, the different configurations seem to be beneficial on vastly
different instances. If we directly compare the results with 4 and 5 iterations of Jaccard-Index, we
find 27 instances where 4 iterations are better and 26 instances where 5 iterations are better.

Finally, we investigate the influence of the initial scores on the mcsved instance set. For this
instance set, we observe almost no influence on the running times, as can be observed in Figure 5.19a.
However, there is a slight improvement in result quality when using initial scores. Figure 5.19b
shows, that the configuration with Weisfeiler-Leman as well as 2 iterations of Jaccard-Index overall
perform slightly better than the baseline, whereas the other configurations initially perform slightly
worse, yet overall lead to a slight improvement in quality.

Our experiments indicate, that applying an initial scoring can improve the performance on most
instance sets. We observe the most pronounced difference on the COX2 instance set, where the
initial scoring helps outperform the baseline significantly. As all configurations have their ups
and downs throughout the different instance sets, it is difficult to chose a single representative.
However, with 4 iterations of Jaccard-Index we observe the most stable performance throughout,
in terms of running time as well as result quality. We therefore from now on – unless otherwise
specified – only use this configuration for the remainder of the experimental evaluation.

5.7 Exploiting Automorphisms

We next look at our method of exploiting automorphisms. Note, that we implemented the
automorphism variants which ensure correctness only for McSplit+RL, though the results are
likely to be similar for McSplit and KaMIS as well. We first discuss the automorphisms in the
context of McSplit and McSplit+RL and next for the Branch-And-Reduce solver of KaMIS.

5.7.1 McSplit and McSplit+RL

We first compare the baseline McSplit+RL and McSplit with the full automorphism recomputation
(nauty recomputation), as well as our simple heuristic variant (McSplit(+RL) autom. heuristic)
and the heuristic orbit update algorithm BFS update).

51



5 Experimental Evaluation

 340

 360

 380

 400

 420

 440

 460

 480

 500

 0.1  1  10  100  1000

#
 o

f 
in

st
a
n
ce

s 
so

lv
e
d

time in seconds

Baseline
WL 3

Jaccard 2
Jaccard 3
Jaccard 4
Jaccard 5

(a) Instances solved over time

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

re
l.
 #

 o
f 

in
st

a
n
ce

s 
>

=
 t

*M
A

X

t

Baseline
WL 3

Jaccard 2
Jaccard 3
Jaccard 4
Jaccard 5

(b) Result quality

Figure 5.17: Comparison of running time and solution quality on proteins instances for
different initial scoring methods for McSplit+RL.
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Figure 5.18: Comparison of running time and solution quality on mcsplain instances for
different initial scoring methods for McSplit+RL.
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Figure 5.19: Comparison of running time and solution quality on mcsved instances for
different initial scoring methods for McSplit+RL.
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Figure 5.20: Comparison of running time and solution quality on AIDS instances for McSplit
and McSplit+RL with heuristic automorphism exploitation autom. heuristic
versus the correct automorphism exploitation (autom. nauty recompute and
autom. bfs update) and the baseline of both algorithms.
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In Figure 5.20a we can see the running times of all approaches for AIDS instances. We first of all
notice, that ensuring that automorphisms are exploited correctly, i.e. such that no optimal solution
can be skipped, results in a significant slowdown when compared to the baseline algorithm. The
BFS update algorithm leads to significant slowdowns as well, though not as drastic as the nauty
recomputation. We additionally see, that the simple heuristic exploitation of automorphisms leads
to better running times than the baseline algorithms, though the difference is rather small, only
two or three fewer instances which result in a timeout. However, if we consider Figure 5.20b, we see
a more drastic difference in result quality between the approaches. The variant, which recomputes
automorphisms with nauty performs especially badly, leading to a significant decrease in result
quality. Whereas the heuristic exploitation of automorphisms leads to a significant increase in
result quality, even though the exploitation may potentially be non-optimal. For McSplit with
heuristic automorphisms we see only one single instance, where the algorithm does not find the
maximum overall solution, for McSplit+RL there are two such instances. If we compare the raw
data, we see one single instance where the heuristic exploitation with McSplit+RL leads to a
non-optimal result, that is not due to a timeout, whereas we observe no such occurrence with
McSplit. The reason simply lies in the order in which branches are explored, which in the case of
McSplit+RL with heuristic automorphisms and that single instance leads to a non-optimal result.
Note, that a similar effect may easily occur vice-versa as well.

The difference in running time become more striking, if we look at the running times for COX2
instances in Figure 5.21a. Remember, that the initial scoring for McSplit+RL already led to a
significant increase of performance versus the baseline algorithm, such that all instances are solved
within 110 seconds. With the heuristic automorphisms, McSplit+RL achieves another significant
performance boost, solving all instances within less than 0.3 seconds. Similarly, McSplit with
the heuristic automorphisms is able to solve all instances within less than six seconds and thus
vastly outperforming its baseline. We again observe both the exact recomputation and the BFS
update algorithm to perform worse than their baseline algorithm. In the case of the COX2 instances,
the difference between both approaches is more pronounced, leading to a significant decrease in
performance for the full automorphism re-computation with nauty, whereas the BFS update only
performs slightly worse than the baseline. Again, due to the heuristic nature of the automorphism
exploitation we are not only interested in running time, but the result quality as well. We can
see in Figure 5.21b, that the simple heuristic approaches for McSplit and McSplit+RL solve all
instances to optimality, we again observe one instance with the baseline algorithm of McSplit+RL,
which is solved slightly worse due to timeout. More strikingly, we see a significant quality decrease
with the nauty re-computations, whereas with the BFS updates we find the optimal solution on all
instances as well, regardless of the timeouts.

Given the poor performance of the orbit update routines, we disregard these two variants for
the remainder of this section and only focus on the heuristic automorphism exploitation versus
the baseline algorithms.

In Figure 5.22a we see that for proteins instances, the running time behavior is similar to that
of AIDS instances. We again observe, that the automorphism heuristics outperform their respective
baseline algorithms. For McSplit there are six and for McSplit+RL four fewer timeout instances
with the automorphism heuristic enabled versus the respective baseline. Looking at the result
quality in Figure 5.22b, we again observe the heuristic approaches to outperform their respective
baseline algorithms. For McSplit the heuristic achieves larger results on ten instances, compared to
the baseline, with McSplit+RL we observe 24 such instances, however, there are additionally ten
instances where the McSplit+RL baseline achieves a larger result than the automorphism heuristic.
Overall, for both algorithms the automorphism heuristic outperforms the baseline algorithm both
in terms of result quality and running time.

Next, we look at mcsplain instances and discuss the running time behavior, depicted in
Figure 5.23a. We, for the first time, observe that the automorphism heuristics do not improve
the running time. This is not overly surprising, as the unlabeled mcsplain instances have few
automorphisms and thus there is little exploitation to be done. We can observe, that McSplit
performs very similarly with both the baseline as well as the automorphism heuristic, whereas for
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Figure 5.21: Comparison of running time and solution quality on COX2 instances for McSplit
and McSplit+RL with heuristic automorphism exploitation autom. heuristic
versus the correct automorphism exploitation (autom. nauty recompute and
autom. bfs update) and the baseline of both algorithms.
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Figure 5.22: Comparison of running time and solution quality on proteins instances for
McSplit and McSplit+RL with heuristic automorphism exploitation autom.
heuristic versus the baseline of both algorithms.
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Figure 5.23: Comparison of running time and solution quality on mcsplain instances for
McSplit and McSplit+RL with heuristic automorphism exploitation autom.
heuristic versus the baseline of both algorithms.
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McSplit+RL we see a slight decline in running time performance for the heuristic. Nonetheless, if
we look at Figure 5.23b, we do see an increase in result quality for the automorphism heuristics.
For McSplit, the automorphism heuristic achieves a larger result on four instances compared
to the baseline, whereas for McSplit+RL there are 21 such instances, thus indicating that the
automorphism heuristics do improve the result quality, even though few automorphisms exist in
the input graphs.

Finally, we turn our attention to mcsved instances. Here, Figure 5.24a shows, that the running
time for both heuristics are very similar to their baseline variant, with little variations which may
naturally occur during the experimentation. Looking at the result quality in Figure 5.24b, we
see that for McSplit the baseline algorithm performs slightly better than the heuristic, there are
eight instances, where the baseline achieves a larger result than the heuristic. For McSplit+RL,
however, Figure 5.24b paints a slightly different picture: The result qualiyt of the heuristic is in
total slightly worse than that of the baseline algorithm. For 59 instances, the baseline algorithm
finds a larger solution than the heuristic, however, for 48 instances the heuristic finds a larger
solution, which is a net difference of 11 instances for which the baseline algorithm outperforms the
heuristic.

Overall, the automorphism heuristics outperform the baseline algorithms in terms of running time
performance as well as result quality. For the mcsved we do observe a slight drop in performance
and quality, however, the result quality is still very close to the baseline algorithm. We thus utilize
the automorphism heuristics for both algorithms in our overall evaluation of Section 5.8.

5.7.2 KaMIS

As we already saw with the automorphisms for McSplit+RL, ensuring correctness mostly leads
to performance decreases, both in terms of result quality and running times. We therefore only
consider the heuristic approach for the Branch-And-Reduce solver of KaMIS. Note, that we only
consider automorphisms for the Branch-And-Reduce solver, but not the Local Search solver, as
there is no clear cut way of exploiting automorphisms during the heuristic search. We again
perform experiments on all instance groups.

Figure 5.25a depicts the running times of the baseline Branch-And-Reduce solver versus the
heuristic automorphism exploitation for AIDS instances. Note, that apart from the automorphisms
both variants are configured identically with the best configurations discussed previously. We
observe very little difference in the running time of the baseline and the automorphism variant,
though with automorphisms the algorithm is slightly faster. Comparing the result quality in
Figure 5.25b, we see absolutely no difference between both algorithms, as they achieve the exact
same solution size for all instances.

However, if we compare the running times for COX2 instances in Figure 5.26a, we observe an
increase in solved instances for the configuration with automorphisms, though the difference is by
far not as stark as it is with McSplit+RL. Looking at the difference in result quality in Figure 5.26b,
we notice an improvement in quality with automorphisms enabled, as fewer instances time out.
Even though the overall result quality is better, there are three non-timeout instances and three
timeout instances, where the variant with automorphisms yields a smaller result than the baseline
algorithm. However, there are 18 instances, where the heuristic achieves a larger result than the
baseline algorithm.

When we look at Figure 5.27a, we again observe a boost in running time performance for our
automorphism heuristic for the proteins instances. However, Figure 5.27b shows, that the faster
running time comes at the cost of slightly reduced result quality. Overall, the baseline algorithm
finds slightly larger solutions, there are two instances where the baseline algorithm finds smaller
solutions than the heuristic, and five instances vice versa. Note, that the heuristic is able to solve
roughly 50 instances more within the timeout than the baseline.

For mcsplain instances, we observe in Figure 5.28a a slight improvement in running time
performance for the automorphism heuristic over the baseline algorithm. For these instances, the
result quality between both variants is almost identical, as can be seen in Figure 5.28b. There are
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Figure 5.24: Comparison of running time and solution quality on mcsved instances for
McSplit and McSplit+RL with heuristic automorphism exploitation autom.
heuristic versus the baseline of both algorithms.
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Figure 5.25: Comparison of running time and solution quality on AIDS instances for KaMIS
with heuristic automorphism exploitation autom. heuristic versus the baseline
algorithm.
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Figure 5.26: Comparison of running time and solution quality on COX2 instances for KaMIS
with heuristic automorphism exploitation autom. heuristic versus the baseline
algorithm.
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Figure 5.27: Comparison of running time and solution quality on proteins instances for
KaMIS with heuristic automorphism exploitation autom. heuristic versus the
baseline algorithm.
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Figure 5.28: Comparison of running time and solution quality on mcsplain instances for
KaMIS with heuristic automorphism exploitation autom. heuristic versus the
baseline algorithm.
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< Branch-Reduce Local Search McSplit McSplit+RL MoMC
Branch-Reduce x 4 5 5 0

Local Search 2 x 3 2 2
McSplit 1 1 x 1 0

McSplit+RL 2 1 1 x 1
MoMC 5 6 6 6 x

Table 5.3: How many instances of the AIDS set was an algorithm able to solve with a larger
solution than the other algorithms. Read: ROW achieved a smaller result on X
instances compared to COLUMN.

six instances, where the baseline achieves a smaller result than the heuristic, and five instances
where the heuristic achieves a smaller result than the baseline.

However, when we next look at mcsved instances, we can see in Figure 5.29a that both variants
perform very similarly in terms of running time. Though when we consider the result quality we
observe a significant drop in quality for the automorphism heuristic in Figure 5.29b. Overall, the
heuristic finds the maximum result on 26 fewer instances than the baseline algorithm and the
overall result quality is worse as well. More detailed, there are five instances which result in a
smaller solution size for the baseline algorithm and a total of 31 instances, where the heuristic
finds a solution smaller than the one found by the baseline.

Comparing all results, we observe an increase in performance with our automorphism heuristic
for almost all our instance sets. For proteins instances we observe a small decrease in result
quality but an increase in running time, only for mcsved instances do we observe significant
performance drops w.r.t. the result quality. Overall, we consider the benefits of the heuristic to
outweigh the downsides, we thus enable the automorphism heuristic for our overall comparison
with the other approaches.

5.8 Overall Comparison

We now compare both solvers of KaMIS [LSS+19], McSplit [MPT17] as well as McSplit+RL
[LLJH20] and the clique solver MoMC [LLJH20] with each other. Based on the preliminary
experiments of the previous sections, we utilize the best configurations determined in our ex-
periments. For the Branch-And-Reduce solver, we activate the tight bounds, the domination
reduction as well as the automorphism heuristic. We additionally utilize the MCS reduction
style for both the Branch-And-Reduce as well as Local Search solvers of KaMIS. For the Local
Search solver we additionally utilize the iteration limits summarized in Table 5.2. Similarly to
the Branch-And-Reduce solver, we activate the automorphism heuristic for both McSplit and
McSplit+RL. The reinforcement learning of McSplit+RL is seeded with the initial scores of four
iterations of our Jaccard-Index scoring method.

We again first discuss results regarding the AIDS instance set. The running times of the
algorithms are given in Figure 5.30a. We can clearly see, that McSplit and McSplit+RL are
vastly superior to the other approaches on this set, almost all instances can be solved by these to
solvers within one millisecond. However, there are a few instances, where both solvers run into
a timeout, whereas the Local Search runs in no timeouts at all, but fewer instances are solved
within one millisecond. The clique solver MoMC performs quite well, it is able to solve close to
450 instances within one millisecond, and it only has a few more timeout instances than McSplit
and McSplit+RL. We clearly see, that the Branch-And-Reduce solver is the slowest overall, about
330 instances are solved within one milliseconds, and the number of instances with timeout is
larger than for any other solver as well. Given these running time results, the result quality shown
in Figure 5.30b is surprising: even though the Branch-And-Reduce solver was overall the slowest,
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Figure 5.29: Comparison of running time and solution quality on mcsved instances for
KaMIS with heuristic automorphism exploitation autom. heuristic versus the
baseline algorithm.
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Figure 5.30: Comparison of running time and solution quality on AIDS instances for the
best algorithms.
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5.8 Overall Comparison

< Branch-Reduce Local Search McSplit McSplit+RL MoMC
Branch-Reduce x 28 44 44 32

Local Search 9 x 26 26 22
McSplit 0 0 x 0 0

McSplit+RL 0 0 0 x 0
MoMC 39 39 39 39 x

Table 5.4: How many instances of the COX2 set was an algorithm able to solve with a larger
solution than the other algorithms. Read: ROW achieved a smaller result on X
instances compared to COLUMN.

in terms of result quality it is superior to MoMC and competitive to the other solvers, achieving at
the worst-case almost 95% of the maximum solution size. The Local Search performs better than
MoMC as well, solving all but three instances to the maximum result. Both McSplit+RL and
McSplit perform very similarly and are overall best, however, McSplit has a slight advantage, with
only one single instance not solved to the maximum, compared to two instances with McSplit+RL.
With MoMC we observe the worst result quality, achieving the maximum result on only 494 and
at the worst-case a quality of only 76% of the maximum solution found. Table 5.3 provides an
alternative view on the result quality: The value X of a cell denotes, that the algorithm of the
row achieved a smaller result on X instances compared to the algorithm of the column. This table
clearly shows, that the Branch-And-Reduce solver found solutions at least as large as MoMC,
regardless of the running time performance.

Next, for the COX2 instance set, we see the running times in Figure 5.31a. We have already
seen the outstanding performance of McSplit+RL for that instance set in Section 5.7, the running
times achieved are clearly vastly superior in the overall performance as well. Second fastest is
McSplit, while the other algorithms immensely struggle with this instance set. The Local Search
is able to solve all instances without timeout, however, most instances require 50 seconds or more
of running time. With MoMC we observe roughly 40 instances, which run into a timeout, but
overall the performance is better than that of the Local Search, over 150 instances can be solved
within ten seconds or less. And finally, the Branch-And-Reduce solver struggles the most with this
instance set, only 80 instances do not result in a timeout. Again, looking at the result quality
in Figure 5.31b is a bit surprising, as again the Branch-And-Reduce solver outperforms MoMC
very clearly, the Branch-And-Reduce solver achieves at least 90% of the maximum result, whereas
MoMC achieves at the worst-case only 55%. The Local Search again performs better than the
Branch-And-Reduce solver, solving almost 20 more instances to the maximum. Here, Table 5.4
provides interesting insights: The Branch-And-Reduce solver achieves a smaller result than MoMC
on 32 instances, whereas MoMC achieves a smaller result on 39 instances. Both McSplit and
McSplit+RL achieve the best overall result on all instances, however, as we have already seen with
the exact variant of McSplit+RL in Section 5.6, the solutions found by McSplit+RL are optimal,
therefore no algorithm can perform better. Overall, the Branch-And-Reduce solver fails to find
the optimum for 44 instances, whereas for MoMC there are only 39 such instances and for the
Local Search solver there are 26 such instances.

Looking at the running times for proteins in Figure 5.32a, we again see that both McSplit
and McSplit+RL are able to solve many instances within one millisecond, here it is roughly 350
instances. For both solvers, almost 50 instances run into the timeout. For MoMC, we observe
200 instances, for which the solver is able to find a solution within one millisecond and roughly
50 timeout instances as well. Next, the Local Search achieves the fewest instances solved within
one millisecond, solving only 51 instances within that time, however, the algorithm has the fewest
timeout instances, with only 20 timeouts. Lastly, the Branch-And-Reduce solver is able to solve
a few more instances within one millisecond than the Local Search, however, overall the solver
performs the worst and runs into timeouts for over 100 instances. As with the previous two
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Figure 5.31: Comparison of running time and solution quality on COX2 instances for the
best algorithms.
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Figure 5.32: Comparison of running time and solution quality on proteins instances for
the best algorithms.
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< Branch-Reduce Local Search McSplit McSplit+RL MoMC
Branch-Reduce x 52 38 37 27

Local Search 0 x 7 7 6
McSplit 25 34 x 24 12

McSplit+RL 19 31 11 x 12
MoMC 29 39 32 31 x

Table 5.5: How many instances of the proteins set was an algorithm able to solve with a
larger solution than the other algorithms. Read: ROW achieved a smaller result
on X instances compared to COLUMN.

< Branch-Reduce Local Search McSplit McSplit+RL MoMC
Branch-Reduce x 281 320 332 74

Local Search 1 x 145 141 21
McSplit 1 22 x 32 0

McSplit+RL 3 18 31 x 1
MoMC 245 281 295 292 x

Table 5.6: How many instances of the mcsplain set was an algorithm able to solve with a
larger solution than the other algorithms. Read: ROW achieved a smaller result
on X instances compared to COLUMN.

instance sets, the running time plot is not a good indicator for what the result quality will be. In
Figure 5.32b, we can clearly see, that the Local Search dominates the result quality, achieving the
best result on almost 98% of instances, which translates to 12 instances in total, for which another
algorithm achieved a better result. Next is McSplit+RL, which finds the maximum solution for
all but 34 instances. Both McSplit and McSplit+RL perform very similarly, though McSplit+RL
has a slight edge, finding consistently slightly better solutions. The clique solver MoMC finds the
maximum solution on more instances than the Branch-And-Reduce solver, however, again, there
are a few instances, for which MoMC finds comparatively bad solutions and as such, the quality
can at the worst-case drop down to only 62% of the maximum solution. We again see a comparison
of the solution sizes in Table 5.5. We can clearly see, that the Local Search performs best, there
are 7 instances each, where McSplit and McSplit+RL find larger solutions, and 6 instances where
MoMC finds a larger solution. However, the solutions found by the Local Search are larger than
those of the other algorithms on many more instances.

We now compare the performance algorithms on the mcsplain instance set, where we can see
the running time behaviors in Figure 5.33a. Here, we again observe dominant running times by
McSplit and McSplit+RL, with McSplit performing slightly better of the two. McSplit is able to
solve almost 100 instances within one millisecond, for roughly 110 instances McSplit runs into
a timeout. Regarding the other algorithms, MoMC is able to solve a few instances within one
millisecond and over 320 instances run into a timeout. Both the Branch-And-Reduce and Local
Search solvers struggle with this instance set, the Branch-And-Reduce solver takes at least one
second to solve an instance, the Local Search takes at least 25 seconds. It is therefore not surprising
that the Branch-And-Reduce solver is able to solve less than 100 instances within the timeout, for
the Local Search, however, we see a steep rise in instances solved, solving over 300 instances within
the timeout. Again, looking at the result quality in Figure 5.33b, we see, that MoMC struggles
to find good solutions on a few instances, at the worst-case finding solutions of only 59% of the
maximum, whereas the Branch-And-Reduce solver at the worst-case finds solutions of 88% of the
maximum and for McSplit, McSplit+RL and the Local Search solver the solution size is at least
90% of the maximum. Overall, McSplit and McSplit+RL perform best, finding the maximum
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Figure 5.33: Comparison of running time and solution quality on mcsplain instances for
the best algorithms.
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< Branch-Reduce Local Search McSplit McSplit+RL MoMC
Branch-Reduce x 53 24 24 59

Local Search 2 x 14 14 29
McSplit 208 226 x 52 161

McSplit+RL 220 237 74 x 171
MoMC 116 122 50 55 x

Table 5.7: How many instances of the mcsved set was an algorithm able to solve with a
larger solution than the other algorithms. Read: ROW achieved a smaller result
on X instances compared to COLUMN.

on roughly 450 instances. The Local Search finds the maximum on only about 320 instances,
for MoMC and the Branch-And-Reduce solver it is 205 and 160 instances respectively. In the
direct comparison in Table 5.6, we can see that the Branch-And-Reduce solver finds solutions
smaller than those of MoMC on 74 instances, whereas vice-versa it is 245 instances. Thus clearly
indicating, that the solutions by MoMC are overall inferior. Additionally, this table shows that
both McSplit and McSplit+RL are vastly superior on the mcsplain set in terms of result quality
as well, having the fewest instances, for which another solver performed better. Interestingly, there
are 32 instances where McSplit performs better than McSplit+RL and 31 instances vice-versa,
indicating, that both algorithms are better suited for different instances.

Finally, we look at the mcsved instances. For this instance group, McCreesh et al. [MPT17]
showed, that McSplit is inferior to a state-of-the-art clique solver. Looking at Figure 5.34a, we
can confirm this, MoMC clearly outperforms both McSplit and McSplit+RL. While McSplit and
McSplit+RL are able to solve close to 200 instances within the timeout, MoMC is able to solve
over 350 instance. The Branch-And-Reduce solver is only able to solve slightly fewer than 100
instances, and the running time overall is fairly slow as well. However, the Local Search solver is
able to solve all instances within less than 30 seconds, thus outperforming all other approaches
significantly. In terms of result quality, Figure 5.34b shows that again the Local Search and
Branch-And-Reduce solver perform better than MoMC. Here, the Local Search is able to solve
within at least 95% of the maximum and it finds the maximum for about 470 instances. The
Branch-And-Reduce solver finds the maximum on 414 instances, whereas for MoMC it is only 376.
The clique solver outperforms both McSplit and McSplit+RL in terms of result quality as well,
achieving the maximum solution size on many more instances, as McSplit and McSplit+RL find
the maximum on only 270 and 257 instances, respectively. Though again, there are a few single
instances, for which MoMC struggles to find good solutions, and thus the worst-case solution
quality drops to 74% of the maximum. Looking at Table 5.7, we can again see that the Local
Search solver performs best and both McSplit and McSplit+RL perform worst.

In summary, over all instance groups McSplit and McSplit+RL exhibit the best running
time behavior, only for vertex- and edge-labeled graphs do the clique and Local Search solver
outperform both algorithms significantly. Given our changes made to the algorithms, both McSplit
and McSplit+RL perform exceptionally well on COX2 instances, where both algorithms are able
to solve all instances to optimality within at most six seconds, whereas all other solvers struggle
immensely on that instance group. The Branch-And-Reduce solver is slowest overall, leading to the
most timeouts by far, however, in terms of result quality, this solver mostly performs surprisingly
well, outperforming the clique solver on most instance groups. In terms of result quality, the clique
solver achieves the worst performance overall, as for all instance groups there are a few instances,
where the clique solver is unable to find good results within the set timeout. The Local Search
solver performs overall quite well, especially on the hard vertex- and edge-labeled instances of
mcsved and the larger proteins instances, the Local Search vastly outperforms all other solvers
in terms of result quality, for mcsved instances, the Local Search significantly outperforms the
other solvers in terms of running time as well.
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Figure 5.34: Comparison of running time and solution quality on mcsved instances for the
best algorithms.
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6 Discussion

6.1 Conclusion
In this work we discussed the MCS problem, where we want to find the largest common subgraph
of two given input graphs. We introduced novel methods of reducing the problem size, using
reductions on the input graphs. The reductions introduced appear to be too specific and only apply
on easy instance, thus they are of little use in practice. We additionally proposed a new method of
computing upper bounds on the product graph or its complement. In our experimentation we
applied this upper bound to the product graph complement and found a few instances, where
the improved upper bound was equal to the maximum solution size. However, the bound only
improved significantly for easy instances. As a means to reduce the search size, we evaluated
the exploitation of automorphisms of the input graphs and the product graph complement. We
have shown, that an exact exploitation is not useful and may in the worst-case even hinder the
performance in terms of running time as well as result quality. However, we have shown that our
heuristic exploitation performs very well in practice, in most cases outperforming the baseline
algorithms both in terms of running time and result quality. Finally, we proposed improvements
to existing solvers, in order to improve their performance. For McSplit+RL we introduced two
different means of computing initial scores for the reinforcement learning and we were able to show
the benefit of these initial scores. For one instance group, the speedup is quite significant, for
the other instance groups the speedup was less pronounced, however, result quality increased in
almost all cases. For the independent set solvers of KaMIS we proposed an alternative reduction
style, which may improve the performance of the reductions significantly. Additionally, for the
Local Search solver we proposed an iteration limit, which may terminate the search earlier than
the default would, thus improving the running time.

In our final evaluation, we compared the KaMIS solvers, with McSplit, McSplit+RL and the
clique solver MoMC. Our experiments confirmed the results of McCreesh et al. [MPT17], who
showed that McSplit performs better than a clique solver on most graph classes. However, on
vertex- and edge-labeled and directed graphs our experiments confirmed, that McSplit is inferior
to a clique solver. The heuristic Local Search solver proves to be superior on the vertex- and
edge-labeled mcsved instances, both in terms of running time and result quality. For the proteins
instances, the Local Search is superior in terms of result quality as well. The Branch-And-Reduce
solver of KaMIS is mostly inferior on all instance groups in terms of running time. However, when
we looked at the result qualities, we observed stark differences between the various solvers. We
mostly see, that the clique solver MoMC struggles immensely on some instances, achieving only
very small results. Thus the overall result quality of MoMC is worse than that of any other solver.
This result is surprising, seeing as MoMC often achieves worse quality than the Branch-And-Reduce
solver, even if the latter times out on far more instances. Additionally, we have not seen such a
quality comparison before in the literature, where the focus mainly lies on running time. It is
therefore of further interest to have the quality comparisons in this work.

6.2 Future Work
We proposed reduction rules for reducing the input size of the graphs, however, it seems that these
rules mainly apply on simple instances, and thus overall have little effect on the running time of
the solvers. For future work, it may be interesting to further investigate these rules and try to find
further or more general rules.
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6 Discussion

Regarding McSplit+RL, we proposed an initialization phase for computing initial scores for
all vertices. Our method accumulates scores for a vertex based on all vertices of the other input
graph. An alternative method may be to compute scores specifically for pairs of vertices – one
vertex from each input graph – and to prioritize pairs with largest scores during the branching.

Our experiments indicate that a heuristic independent set solver can outperform exact solvers
with regards to result quality on difficult instances. We therefore propose further investigating the
heuristic solver in the context of even harder and larger instances. Additionally, we may investigate
the use of the heuristic solver as a means of computing a lower bound for exact solvers.
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