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Abstract

Representations of polygons as simple shapes such as sets of rectan-
gles are of interest in many areas. We present a problem that has, to
our knowledge, not been studied before in which we seek to represent a
polygon with only vertical and horizontal edges which may contain holes
as a set of rectangles that are allowed to overlap while minimizing the
cost of the rectangles, which is equal to α + β · A(R) where A(R) is the
area of the rectangle and α, β ∈ N0 are freely chosen, but the same for
all rectangles. In this thesis, we define this special case of the weighted
geometric set cover problem, discuss other closely related problems, give
several heuristic algorithms as well as an integer linear program formula-
tion for it and evaluate them on a large number of polygons, comparing
both the cost of the solutions returned by the algorithms as well as their
runtime performance.

3



1 Motivation

Representing a polygon using simpler shapes is a relevant problem in many
fields, including integrated circuit design [12], image compression [18] and con-
struction [24].

When using rectangles or similar simple shapes, the main goal is usually to
minimize the number of shapes used to represent the polygon. However, in some
applications, there may be a cost associated with both the number of shapes
used as well as their area. If shapes may overlap, this can lead to a solution
with more shapes costing less than a solution with fewer shapes in some cases.

One such example are some 2D video games in which sets of individual
“tiles” may be more compactly represented as “objects”. Each object requires
a certain amount of time to initialize itself, after which each of its tiles requires
a certain amount of time to be rendered. Depending on how long both of these
actions take, it may be faster to have more objects, consisting of fewer total
tiles, or fewer objects, consisting of more total tiles. Note that for the purpose
of this comparison, if two or more tiles overlap, all of them are still rendered
and thus contribute to the total required time.

This thesis aims to find and compare approaches specifically for the problem
of representing a polygon that may contain holes and only has axis-aligned edges
as a set of axis-aligned rectangles. The rectangles may overlap and can be freely
chosen. The cost of this set of rectangles depends on the size of the individual
rectangles as well as the size of the set. Our goal is to minimize the total cost
while ensuring that the union of the rectangles in our set is identical to the
original polygon within a reasonable time frame.

As far as we are aware, this is a problem that has not previously been
studied. We will refer to it as the Weighted Rectangle Cover Problem (WRCP)
throughout the rest of this thesis.

The goal of this work is to design, implement and evaluate algorithms in
order to provide high-quality solutions for the WRCP within a reasonable time
frame as well as to give an integer linear program formulation and implementa-
tion that can be used to compute optimal solutions given enough time.

To accomplish these goals, we adapt algorithms intended for various related
problems and modify them via post-processing steps to provide improved so-
lutions for our specific problem. These algorithms are then compared against
each other on instances with different sizes and parameters, as well as against
an optimal solution, when available, to determine their quality and execution
time.

1.1 Overview

In section 2, we explain the notation and terminology used throughout the
thesis. We then give an overview of problems that are similar to the WRCP, as
well as known algorithms for these problems in section 3. In section 4 we discuss
the algorithms we have designed as part of this thesis, their implementation is
then briefly touched on in section 5, followed by the evaluation of the algorithms
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and interpretation of the results in section 6. In section 7, we give a summary
of our main results, the limitations of our approaches, as well as potentially
interesting future work in this area.

2 Preliminaries

2.1 Problem Statement

In this section, notation and definitions will be given that will be used through-
out the rest of this thesis. Parts of the notation and terminology are based
on [13, 23, 22, 21].

In an instance of the WRCP, we are given a non-self-intersecting polygon
P in the form of a list of edges, specifying the polygon’s interior, as well as
potentially one or more additional lists of edges, specifying any holes in the
polygon’s interior. We are also given two parameters, α and β with α, β ∈ N0,
which determine the cost of a rectangle when used in a solution to this problem
instance. In an instance of the WRCP, the cost of a rectangle R is c(R) =
α+ β ·A(R) where A(R) denotes the area of the rectangle.

Our goal is to represent P as a set of axis-aligned rectangles C, such that⋃
R∈C R ≡ P , while minimizing θ(C) =

∑
R∈C c(R). A set of rectangles C that

fulfills the condition that the union of its elements is equivalent to P is called a
cover. Note that the rectangles in a cover are allowed to overlap; If they do not
overlap, the cover is also a partition. Note that all partitions are also covers,
but the opposite is not true.

An edge of a polygon is a segment connecting two endpoints, which are called
vertices. All edges share each of their two endpoints with another edge. In the
WRCP, all edges are parallel to either the X or Y axis and all vertices are two
dimensional and have integer coordinates. A polygon with such edges is called
rectilinear or orthogonal. Since we are only concerned with rectilinear polygons,
we will use the term “polygon” to mean “rectilinear polygon” throughout the
rest of this thesis.

By non-self-intersecting, we mean that none of the polygon’s edges intersect,
except at their endpoints and every vertex is an endpoint of exactly two edges.

For a rectangle R, which is also a polygon, we will represent it as a tuple of
its top-left and bottom-right vertices, meaning that R = ((xl, yt), (xr, yb)) with
xl < xr, yb < yt and xl, xr, yb, yt ∈ Z. We will also use tl(R) = (xl, yt) and
br(R) = (xr, yb) as well as max x(R) = xr, max y(R) = yt, min x(R) = xl and
min y(R) = yb.

Note that a rectilinear polygon always has the same number of horizontal
and vertical edges, since the direction of two edges that share an endpoint must
be different.

A vertex of a polygon is called concave if the interior angle between its two
edges is 270◦ or convex otherwise.
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Figure 1: A set of rectangles D with |D| = 3.

We will use E(P ) and V (P ) to refer to the set of edges and vertices of P
respectively. Note that when we say E(P ), we mean all edges of P , no matter
if they specify the interior of P or form a hole. The same is true for V (P ).

The bounding box of a polygon P , which we will refer to using Z(P ) is defined
as the smallest rectangle R that fully contains P , meaning that R∩P ≡ P and
the area of R is minimal.

A pixel π = ((xl, yt), (xr, yb)) with xr − xl = 1 and yt − yb = 1 of a polygon
P is a unit square in the interior of P . We will use Π(P ) to refer to the set of
all pixels that lie inside P .

If we draw one horizontal and one vertical line from each concave vertex of
the polygon into its interior until it intersects with an edge from E(P ), we will
be left with a set of rectangles lying in P ’s interior. We will denote this set as
B(P ) and call its elements the base rectangles of P .

Lemma 1. The total number of rectangles in B(P ) is O(v2) where v is the
number of vertical edges of P .

Proof. If we extend every vertical and horizontal edge of the polygon in both
directions until its length becomes infinite, we are left with a set of rectangular
regions bounded by these lines lying inside the bounding box of P . Since a
rectilinear polygon has the same number of vertical and horizontal edges, there
are v vertical and v horizontal lines bounding (v− 1)(v− 1) rectangular regions
inside the polygon’s bounding box, which is O(v2). Since the polygon consists
of some subset of these rectangular regions, it is indeed an upper bound.

When given a set of rectangles D, we will let Γ(D) denote the set of all
rectangles whose representation as pixels is equal to a union of subsets of D,
meaning a rectangle R belongs to Γ(D) if and only if ∃A ⊆ D such that Π(R) ≡⋃

R′∈A Π(R′), meaning that Γ(D) contains all rectangles which can be created
by combining rectangles from D. Figure 1 and Figure 2 show a simple D and
Γ(D).

Lemma 2. The total number of rectangles in Γ(Π(P )) is O(w2h2), where w and
h are the width and height of the bounding box of the input polygon respectively.

Proof. Consider Π(Z(P )), the set of pixels contained in the polygon’s bounding
box. Since the bounding box has width w and height h, there are h rows and w
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Figure 2: The five rectangles in Γ(D) for the D from Figure 1.

columns of pixels in Π(Z(P )). Let p be a pixel in the ith row and jth column,
there are exactly ij pixels in Π(Z(P )) with row index ≤ i and column index
≤ j. Each of these pixels is the upper left-hand pixel in some unique rectangle
belonging to Γ(Π(Z(P ))), with p being the lower right-hand pixel, meaning
there are exactly ij rectangles for every pixel in Π(Z(P )), which gives us a total
number of

w∑
i=1

h∑
j=1

ij

=(

w∑
i=1

i)(

h∑
j=1

j)

=
w2 + w

2

h2 + h

2

=
w2h2 + w2h+ wh2 + wh

4

=O(w2h2)

rectangles when considering all pixels in Π(Z(P )).
This is an upper bound since the polygon P is made up of a subset of pixels

from Π(Z(P )).

Lemma 3. The total number of rectangles in Γ(B(P )) is O(v4) where v is the
number of vertical edges of the polygon.

Proof. In the proof of Lemma 1, when we extended the edges of the polygon to
infinite length, we saw that the bounded rectangular regions inside the polygon’s
bounding box formed a grid with v rows and v columns. Combining this with
the proof of Lemma 2, we can see that there must be O(v2v2) = O(v4) rectangles
in Γ(B(P )).

Note that in the worst case, we have |Π(P )| = |B(P )| and thus |Γ(Π(P ))| =
|Γ(B(P ))|, an example of a polygon for which this is the case is shown in Fig-
ure 3.
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Figure 3: A polygon P for which Π(P ) = B(P ).

3 Related Work & Problems

This section outlines various problems related to the WRCP and discusses dif-
ferent approaches taken to solve them.

3.1 Rectilinear Picture Compression

In the Rectilinear Picture Compression problem (RPC), we are given a binary
matrix and must represent it as a minimum set of rectangular submatrices
containing only entries which are 1, such that every entry which is 1 is contained
in at least one of our submatrices. [18]

This is almost the same problem as the WRCP with α = 1 and β = 0, since
the cost function in this case becomes just c(R) = 1, which means we are just
minimizing the number of used rectangles without considering their areas. In
this case, the only difference between the two, as we have defined them, is the
format we receive our input in.

This problem has received considerable attention in different fields over the
years and was proven to be NP-hard by Masek [20]1.

A simple primal and dual integer linear programming formulation for this
problem is given by Heinrich-Litan and Lübbecke [13], some alternative formu-
lations were attempted by Koch and Marenco [18].

The primal formulation given in [13] defines one binary variable per maximal
rectangle that can fit inside the polygon and one constraint for each pixel of the
polygon. The constraints dictate that every pixel must be covered by at least
one rectangle which contains it. This ensures that a valid cover is computed.
The objective function which is minimized is the sum of all binary variables, i.e.
the number of rectangles used.

The polynomial-time algorithm with the best currently known approxima-
tion ratio of O(

√
log v), where v is the number of vertical or, equivalently, hori-

zontal edges of the polygon, is given by Kumar and Ramesh [3]. This algorithm
covers the polygon by looking for strips, which are essentially 1-pixel-wide ver-
tical rectangles that cannot be extended further up or down since they would
otherwise extend outside the polygon. These rectangles are then extended left

1Original source unavailable, but quoted in many sources, including [13]
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and right as far as possible. Since two different strips could result in the same
extended rectangle, only distinct extended rectangles are kept in the final cover.

Another polynomial-time algorithm shown to give good results in practice
is also given by Heinrich-Litan and Lübbecke [13]. This algorithm is based on
the greedy set cover algorithm, described in subsection 3.3, but extends it by
picking certain rectangles which are guaranteed to be part of some optimal cover
before invoking the greedy set cover algorithm to cover the remaining parts
of the polygon, pruning any redundant rectangles in a post-processing step.
This algorithm is based on an earlier one [11], which has worst-case runtime
complexity O(n5) where n is the the larger of the height and width of the input
polygon’s bounding box.

Fast approaches for large instances with potentially improved quality are
discussed by Koch and Marenco [18]. Their approaches work by finding an
initial cover for the polygon by looking for large rectangles, grouping the pixels
of the polygon into so-called atomic rectangles using this initial cover and then
choosing a subset of the initial cover to cover the obtained atomic rectangles.

3.2 Rectilinear Polygon Partition

Finding a partition (also called decomposition or dissection) of a rectilinear
polygon into non-overlapping rectangles is, in contrast to the overlapping case,
a problem that is optimally solvable in polynomial time even if the polygon
contains holes [21].

The first algorithm, given by Ohtsuki [21], had runtime complexity O(n2.5),
which was later improved to O(n1.5 log n) [14] with n being the number of ver-
tices of the rectilinear polygon. The algorithm finds an optimal partition by first
locating degenerate diagonals between concave vertices in the polygon, which
are the edges between two concave vertices that can be connected by a straight
horizontal or vertical segment that does not leave the polygon’s interior and
does not intersect any edges of the polygon in more than a single point. The
intersections between these vertical and horizontal segments can be represented
as a bipartite graph, where a vertical and horizontal node have an edge between
them if the segments they represent intersect. Our goal is to pick as many non-
intersecting diagonals from the set of intersecting diagonals as possible. This is
the same as finding a maximum independent set of the bipartite graph, which
can be accomplished in polynomial time. After this, we pick the remaining set of
degenerate diagonals which do not intersect any others, as well as an arbitrary
vertical or horizontal cut from each remaining concave vertex into the polygon’s
interior until it hits either an edge of the polygon or one of our picked degenerate
diagonals. The rectangles that exist between these picked diagonals and cuts at
the end of this process correspond to an optimal partition of the polygon. [21]

3.3 Weighted Set Cover

In the weighted set cover problem, we are given subsets S = (S1, S2, . . . , Sk)
of a universe U , each of which has an associated weight given by a function

9



w(Sj). The goal is to pick subsets such that their union equals the universe
while minimizing the total weight of the chosen subsets. [26]

The unweighted set cover problem isNP-complete [16], making the weighted
version NP-hard, since it is equivalent to the unweighted case when all weights
are set to the same constant and thus at least as hard as the unweighted problem.

Simple greedy approaches exist both for the unweighted case [19, 15] and for
the weighted case [6] which yield an O(log n) approximation factor, where n is
the number of elements in the universe.

If we let L be the set of elements that are already contained in some picked

set, the greedy algorithm picks the set Sj ∈ S which maximizes
|Sj−L|
w(Sj) . Then,

every element of the picked set is added to L. These steps are repeated until
L = U . [6]

Interestingly, it is proven by Feige [9] that O(log n) is the best approximation
that can be provided in polynomial time by any algorithm for this problem in
the general case unless P = NP.

The weighted set cover is a generalization of the WRCP. To formulate the
WRCP as an instance of the weighted set cover, let the universe U be equal to
the set of the input polygon’s pixels P and let the subsets S of U be equal to
the set of all possible rectangular subsets of P , Rp. The cost function of the
WRCP, c(R) = α+ β · |Π(R)| can be used analogously as a weight function for
the weighted set cover problem.

The greedy set cover algorithm is used by Heinrich-Litan and Lübbecke [13]
as a subroutine of an algorithm specifically devised for the rectangle cover prob-
lem, which was already discussed in subsection 3.1.

3.3.1 Weighted Geometric Set Cover

The weighted geometric set cover is a family of special cases of the general
weighted set cover, where the subsets of the universe are geometric objects [25].
The WRCP is part of this family as well.

Even et al. give a randomized algorithm for a closely related problem to the
weighted geometric set cover with an approximation factor of O(log OPT) for
general geometric objects with “low VC-dimension”, where OPT is the weight
of an optimal solution [8]. Unfortunately, this result only holds when weights
are larger than 1 and, in addition, OPT could be arbitrarily larger than the
size of the universe, which would make O(log n) the superior bound in those
cases [1]. Their algorithm is based on solving the relaxed linear program of the
problem instance and then rounding it by probabilistically finding an ε-net of
small size.

Varadarajan gives a similar probabilistic algorithm which uses a “quasi-
uniform” sampling of ε-nets to round the linear program solution, which can
yield improved results when the union complexity of the geometric objects is
“near-linear” [25]. The union complexity, which is a measure of the complexity
of the boundary of a union of geometric objects, of n rectangles is O(n2) [17],
thus Varadarajan’s algorithm [25] gives 2O(log∗ r) log r approximation or better
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in the WRCP, where r is the number of all possible rectangles which fit inside
the polygon.

There are also interesting recent results in the unweighted case by Agarwal
and Pan [2] as well as Bus et al. [5] based on the works of Brönnimann and
Goodrich [4]. These are likewise centered around the computation of ε-nets and
largely theoretical, though efficient computation of ε-nets for disks has been
implemented [5].

4 Algorithms

In this section, the different algorithms that were implemented and evaluated
for the WRCP as part of this thesis will be discussed.

4.1 Integer Linear Program

Our first algorithm is an integer linear program formulation of the WRCP, which
can be used to compute optimal solutions given enough time. Our formulation is
based on the primal one used for RPC [13], which we have previously described
in subsection 3.1. A crucial difference between their formulation and ours is
that we cannot restrict ourselves to only maximal rectangles, as is the case in
RPC. This naturally leads to the question of which rectangles we do have to
consider.

It would suffice to consider all rectangles in Γ(Π(P )), since this is the set of
all rectangles that can fit inside P . This is not ideal, since simply scaling up
the polygon will result in Γ(Π(P )) growing, because the number of rectangles in
Γ(Π(P )) is O(w2h2), due to Lemma 2, which scales with the width and height
of the polygon’s bounding box.

It seems intuitive that we should be able to scale up the polygon without
having to increase the number of rectangles that we have to consider. For this

purpose, we can use Γ(B(P )) instead, which has size O(v4), where v = E(P )
2 .

This is preferable, as it means the complexity of the problem does not grow
unless the number of edges of the polygon grows.

Conjecture 1. For every polygon P with parameters α and β there exists an
optimal cover C ⊆ Γ(B(P )).

We were unable to prove Conjecture 1 formally, but have compared a for-
mulation of the integer linear program using rectangles from Γ(Π(P )) to our
proposed formulation using only rectangles from Γ(B(P )) on 168 small-size in-
stances and in all cases the two formulations returned covers with equal costs.
Furthermore, the formulation using only rectangles from Γ(B(P )) was never out-
performed by one of the heuristic algorithms across all experiments for which
it returned a solution within the allotted time frame. This suggests that either
our conjecture is true or, alternatively, cases where our formulation does not
return an optimal cover are at least rare enough in practice to still make it a
useful tool to consider.
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The rectangles in Γ(B(P )) can be enumerated using the procedure shown in
Algorithm 1. On a high level, this procedure iterates through all base rectangles
and finds all rectangles which are contained in P ’s interior and have that base
rectangle in their top left corner and any other base rectangle in their bottom
right corner.

Lemma 4. Algorithm 1 runs in O(v4) time, where v is the number of vertical
edges of the polygon.

Proof. We know from the proof of Lemma 1 that the number of base rectangles
is O(v2). The outer for-loop iterates through all base rectangles, so it will iterate
at most O(v2) times. The first nested while-loop iterates from the current top
base rectangle rightwards until it hits a hole or the boundary, these are less
than v iterations, since our grid has width v − 1, the same argument holds in
the downward direction for the second nested while loop.

After we enumerate Γ(B(P )) using the algorithm above, our integer linear
program looks as follows, based on [13]:

θ = min
∑

R∈Γ(B(P ))

xR · c(R) (1)

s. t.
∑

R∈Γ(B(P )):R3b

xR ≥ 1 b ∈ B(P ) (2)

xR ∈ {0, 1} R ∈ Γ(B(P )) (3)

The constraints in (2) ensure that every base rectangle is covered by at least
one rectangle, while the objective function (1) ensures that the total cost of the
picked rectangles is as small as possible.

With this formulation, we need one constraint per base rectangle in B(P )
and one binary variable xR per rectangle R ∈ Γ(B(P )). As we saw earlier, the
number of base rectangles is O(v2) and the number of rectangles in Γ(B(P )) is
O(v4), so we have O(v2) constraints and O(v4) binary variables in total in our
formulation.

4.2 Greedy Weighted Set Cover

Another algorithm we have implemented and evaluated is the greedy weighted
set cover algorithm, which we have already briefly discussed in more general
form in subsection 3.3.

Since the greedy set cover algorithm works by selecting the most cost-
effective set from the available sets until every element in the universe is cov-
ered [6], we have to supply it with a list of rectangles to choose from, just like
for the integer linear program. We choose to use Γ(B(P )) over Γ(Π(P )) here as
well due to the same benefits mentioned in the previous section.

Our version of the greedy weighted set cover algorithm for the WRCP is
shown in Algorithm 2 and is based on [6].
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Algorithm 1 EnumerateBase

Require:
B = B(P )

1: function EnumerateBase(B)
2: R← ∅
3: . For every base rectangle find all rectangles with it in their top left corner
4: for b ∈ B do
5: xl ← min x(b) . X-coordinate of left side of b
6: yt ← max y(b) . Y-coordinate of top side of b
7: t← b . Current top right base rectangle
8: l← −1 . How many times we moved down for the previous t
9: while true do

10: xr ← max x(t) . X-coordinate of right side of t
11: i← t . Current bottom right base rectangle
12: lt ← 0 . Temporary l
13: while true do
14: yb ← min y(i) . Y-coordinate of bottom side of i
15: R← R ∪ {((xl, yt), (xr, yb))}
16: if lt = l then
17: break . Cannot move down one row, try new t
18: end if
19: if i has a bottom neighbor then . Base rectangle below i
20: i← i’s bottom neighbor . Move down one row
21: lt ← lt + 1
22: else . Hole or exterior below i
23: l← lt . Cannot move down more than lt times for b now
24: break . Try new t
25: end if
26: end while
27: if t has a right neighbor then . Base rectangle to right of t
28: t← t’s right neighbor . Move right one column
29: else . Hole or exterior to right of t
30: break . Try new b
31: end if
32: end while
33: end for
34: return R
35: end function
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Algorithm 2 GreedyWeightedSetCover

Require:
B = B(P )
G = Γ(B(P ))

1: function GreedyWeightedSetCover(B, G)
2: C ← ∅ . Initialize empty cover
3: for R ∈ G do
4: a(R)← |Π(R)| . a(R) gives “effective area” of R
5: end for
6: while B 6= ∅ do . While there exists an uncovered base rectangle

7: R∗ ← argmin c(R)
a(R) where R ∈ G . Get most cost-effective rectangle

8: C ← C ∪ {R∗} . Add it to the cover
9: G← G− {R∗} . Remove it from future consideration

10: L← ∅ . Initialize set of base rectangles in R∗

11: for b ∈ B do
12: if Π(b) ∩Π(R∗) 6= ∅ then
13: L← L ∪ {b} . R∗ contains b, add it to L
14: B ← B − {b} . b is now covered by R∗

15: end if
16: end for
17: for R ∈ G do . For each remaining rectangle under consideration
18: for l ∈ L do . For each base rectangle from R∗

19: if Π(l) ∩Π(R) 6= ∅ then . if R contains l
20: a(R)← a(R)− |Π(l)| . decrease R’s effective area
21: end if
22: end for
23: if a(R) = 0 then . If R has no effective area left
24: G← G− {R} . remove it from G
25: end if
26: end for
27: end while
28: return C
29: end function
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Figure 4: A polygon for which the greedy cover contains a fully redundant
rectangle when α = 13 and β = 1.

Lemma 5. Algorithm 2 runs in O(|B(P )|4) time.

Proof. The outer loop runs at most |B(P )| times, the first inner for-loop is
dominated by the second one, since B ⊆ G at all times. The second inner for-
loop runs at most |G||L| times, where |G| = O(|B(P )|2) and |L| = O(|B(P )|),
so in total we have O(|B(P )|4) iterations.

The time complexity of this algorithm could likely be improved to |B(P )|3,
but this would involve storing pointers for each base rectangle in B(P ) to the
rectangles in Γ(B(P )) that it is contained in, which would drastically increase
the memory usage of the algorithm on large instances, which our version of the
algorithm avoids.

4.2.1 Post-processing

To improve solutions given by the above greedy weighted set cover algorithm,
we use a post-processing step to first remove rectangles that are fully redundant
from C and then trim redundant rows and columns of pixels from the remaining
rectangles.

By redundant rows and columns of pixels of a rectangle R ∈ C, we mean a
set S ⊆ Π(R) with |S| as large as possible such that S ⊆

⋃
R′∈C−{R}Π(R′) and

∃R∗ ∈ Γ(B(P )) such that Π(R∗) ≡ Π(R)− S. Meaning that R can be replaced
by R∗ without invalidating the cover, since all pixels in S are already covered
by some subset of C−{R}, giving C∗ = (C−{R})∪{R∗} where Π(R∗) ⊂ Π(R)
which gives θ(C∗) = θ(C)− |Π(R)−Π(R∗)|, improving the cost of the cover.

By fully redundant rectangle, we mean a rectangle R ∈ C for which all of
its rows or, equivalently, columns are redundant, meaning that for the set S of
redundant pixels of R we have S ≡ Π(R). Such rectangles can be removed from
the cover completely without invalidating it, giving C∗ = C − {R} improving
the cost of the cover again.

It may seem somewhat counter-intuitive that the greedy algorithm could
return a cover containing a completely redundant rectangle and this indeed does
seem to be rare in practice, occurring less than ten times across our thousands
of performed experiments.

An example input for which a fully redundant rectangle is picked by the
greedy algorithm is shown in Figure 4 and Figure 5.
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Figure 5: The greedy cover for the polygon and costs from Figure 4 after the
first three iterations. The red rectangle will eventually become fully redundant,
as the top, middle and bottom rows will be covered by fully extended rectangles
in the last three iterations.

Figure 6: A polygon with α > 12 and β = 1 for which trimming the rectangles
in the greedy set cover in the opposite order they were added to the cover
gives a greater cost reduction than trimming them in the same order they were
added in. If we trim the blue rectangles first, which were picked before the red
rectangle, we will reduce the cost by 9, but trimming the red rectangle would
have reduced the cost by 15.

Lemma 6. Removal of fully redundant rectangles from C can be accomplished
in O(|C||B(P )|) time.

Proof. We can iterate through all R ∈ C and take note of the base rectangles
that it covers, giving us a function T (A) telling us how many rectangles in C
cover the base rectangle A. This can be done in O(|C||B(P )|) time. Afterward,
we can iterate all R ∈ C a second time and check if T (A) > 1 for every base
rectangle A which is contained in R. If that is the case, R does not cover any
base rectangles uniquely and we can remove it completely, reducing T (A) by 1
for every base rectangle A which it contained. Since we have two loops each
running in O(|C||B(P )|) time which are not nested we take O(|C||B(P )|) time
overall.

For the trimming of redundant rows and columns, it is notable that the
order in which we trim the rectangles in C can make a difference in the final
output. Figure 6 and Figure 7 show two such situations. As is shown by these
two examples, the order we should trim rectangles in the cover in to maximally
reduce their overall cost depends on the input and it is not immediately obvious
how or if an ideal order can be computed or chosen in an obvious way.

Lemma 7. Removal of redundant rows and columns from rectangles in C can
be accomplished in O(|C||B(P )|) time.
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Figure 7: A polygon with α > 58 and β = 1 for which trimming the rectangles
in the greedy set cover in the order they were added to the cover gives a greater
cost reduction than trimming them in the opposite order they were added in.
If we trim the red rectangle first, which was picked after the blue rectangle, we
will reduce the cost by 13, but trimming the blue rectangle would have reduced
the cost by 14.

Proof. Construct T (A) as in the proof for Lemma 6. Afterward, iterate all
R ∈ C a second time and construct the bounding box z of the base rectangles
{A1, A2, . . . , An} of P which are contained in R and have T (Ax) = 1, meaning z
is the bounding box of the base rectangles which R covers that are not covered
by any other rectangle in C. If z is not equal to R, z must be smaller than R and
we can replace R with z in our cover while still keeping every base rectangle
in R covered at least once. Afterward, we have to decrement T (A) by 1 for
each base rectangle which was covered by R but is no longer covered by z. The
time taken by this process is the same as in the proof for Lemma 6, which is
O(|C||B(P )|).

4.3 Partition

We have already described Ohtsuki’s polynomial-time algorithm [21], which
optimally partitions a polygon into rectangles, in subsection 3.2.

In our experiments, we use both an unaltered version of Ohtsuki’s algorithm
as well as a version with an additional post-processing step after the initial par-
tition is computed, which potentially turns the partition into a cover, reducing
the number of rectangles.

It is worth noting that according to Franzblau and Kleitman [10], the size
of a partition of P into rectangles can at worst be “twice the size of the mini-
mum cover plus the number of holes”. As we will see in our experiments, this
seems to occur rarely in practice and the partition even appears to often give
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superior results on small and medium size instances when compared to heuristic
algorithms specifically designed to compute a cover.

There also exist certain types of polygons for which an optimal partition is
also an optimal cover for the WRCP, no matter which α and β are used.

Lemma 8. For a polygon P with arbitrary costs α and β, if there exists an
optimal partition D of P and an optimal cover C of P with α = 1 and β = 0
such that |D| = |C| then D is also an optimal cover for any α, β ∈ N0 for P .

Proof. Since we computed C with α = 1 and β = 0, C covers P using as few
rectangles as possible, since it is optimal by definition. D contains the mini-
mum number of rectangles needed to cover P since |D| = |C| and since D is a
partition, we know that

∑
R∈D |Π(R)| = |Π(P )|, meaning that the sum of the

area of the rectangles in D is equal to the area of the polygon itself. For the
purpose of contradiction, assume that there exists some C ′ for some arbitrary α
and β such that θ(C ′) < θ(D), meaning C ′ costs less than D for these param-
eters. We have θ(C ′) =

∑
R∈C′ α+ β|Π(R)| and θ(D) =

∑
R∈D α+ β|Π(R)|,

but since D is a partition, we know that the area of all rectangles in it combined
is the area of the polygon itself since a partition does not overlap, thus we have
θ(D) = α|D|+ β|Π(P )|.

∑
R∈C′

α+ β|Π(R)| < α|D|+ β|Π(P )|

α|C ′|+
∑
R∈C′

β|Π(R)| < α|D|+ β|Π(P )|

We know that we have |D| = |C|, so α|C ′| ≥ α|D| or C ′ would cost less than
C when α = 1 and β = 0, a contradiction since C is optimal by definition. That
leaves us with

∑
R∈C′

β|Π(R)| < β|Π(P )|∑
R∈C′

|Π(R)| < |Π(P )|

which means the sum of areas of rectangles in C ′ must be smaller than the
area of P , but this would mean that there is some part of P which is not covered
by C ′, making it an invalid cover.

Since our assumption that C ′ costs less than D is contradictory for arbitrary
α and β, it follows that D must be optimal for all α and β.

If we were able to tell easily whether a given polygon is of this type, we would
be able to provide provably optimal covers for such polygons in polynomial time,
though it appears unclear what the exact conditions under which this is the case
are, as well as whether it is possible to efficiently verify them.
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Figure 8: A partition for which there are two rectangles (the red and the yellow
one) that are not vertically or horizontally aligned which could be joined into a
larger rectangle.

4.3.1 Post-processing

We use two different post-processing methods after we compute the partition.
They both potentially give improved solutions, the first is faster than the second,
but may miss some possible improvements which the second method considers.

Aligned joins In the first method, we post-process the partition returned
for a polygon P by finding vertically and horizontally aligned rectangles and
joining pairs of them into one larger rectangle if doing so reduces the overall
cost. Note that there may be other ways to join rectangles, such as the situation
shown in Figure 8. We do not consider these situations in this method of post-
processing in the interest of improved runtime.

By joining two rectangles R1, R2 ∈ C, we mean replacing C by C ′ =
(C − {R1, R2}) ∪ {J(R1, R2)} with J(R1, R2) = ((xl, yt), (xr, yb)) such that
xl = min(min x(R1),min x(R2)), yt = max(max y(R1),max y(R2)), xr =
max(max x(R1),max x(R2)) and yb = min(min y(R1),min y(R2)). In other
words, J(R1, R2) is the smallest rectangle which contains both R1 and R2.

By horizontally aligned, we mean a subset of rectangles S ⊆ C such that
min y(R1) = min y(R2)∧max y(R1) = max y(R2)∀(R1, R2) ∈ S × S, meaning
all bottom edges and all top edges of rectangles in S have the same minimum
and maximum Y-coordinate respectively.

vertically aligned is defined the same way, but with min x(R1) = min x(R2)
and max x(R1) = max x(R2) and all left and all right edges of rectangles in S
having the same minimum and maximum X-coordinate respectively.

Lemma 9. The vertically or horizontally aligned rectangles in a cover C can
be determined in O(|C|) time.

Proof. We can iterate through all R ∈ C and add them to a list which is mapped
to by (min x(R),max x(R)) or (min y(R),max y(R)). When we have iterated
through all rectangles, we will be left with lists containing the vertically or
horizontally aligned rectangles in C respectively.
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After we calculate the aligned rectangles, we sort each list of aligned rect-
angles by the rectangle’s minimum Y or X-coordinate, depending on the axis
they are aligned on. This is done to ensure that when we iterate through these
lists and try to join two rectangles, we know that the next rectangle in the list
is the one that is closest to the current one. Note that sorting like this is pos-
sible because we are working on a partition, which means none of the aligned
rectangles overlap.

Lemma 10. All lists of vertically or horizontally aligned rectangles can be sorted
in O(|C| log |C|) time.

Proof. We know that the sum of the length of all lists is |C| since each rectangle
appears in exactly one list, as a rectangle cannot have multiple minimum and
maximum coordinates on the same axis. In the worst case, all rectangles belong
to the same list, in which case we can sort them in O(|C| log |C|) time using a
standard sorting algorithm [7].

After the lists are sorted, we proceed to attempt to join pairs of rectangles
in them. We do this by trying to join each rectangle Rk in the list with the next
rectangle Rk+1. If c(J(Rk, Rk+1)) < c(Rk) + c(Rk+1), we know that replacing
the two rectangles with their joint rectangle would improve the overall cost
of the cover. But before we do so, we have to check whether J(Rk, Rk+1)
is contained in Γ(Π(P )), since otherwise, it is not a rectangle which is fully
contained in P and would thus invalidate the cover. If the joint rectangle is
cheaper than the two original ones and does not invalidate the cover we replace
C with C ′ = (C − {Rk, Rk+1}) ∪ {J(Rk, Rk+1)} and continue by trying to
join J(Rk, Rk+1) and Rk+2. Otherwise, we do not replace any rectangles and
continue by trying to join Rk+1 and Rk+2.

Note that the fastest way we have found in practice to check whether a
rectangle R is fully contained within P is to check whether R contains any part
of an edge e ∈ E(P ) strictly on its interior, meaning that the endpoints of the
edge do not lie on a common line with any of the rectangle’s vertices and the
edge intersects with the rectangle. Note that we can get away with only checking
half of E(P ) because we only have to check edges with the opposite orientation
of the axis we are joining our rectangles across.

Lemma 11. Following the procedure described above on all lists of vertically or
horizontally aligned rectangles takes O(|C||E(P )|) time.

Proof. We iterate every list of aligned rectangles exactly once and we know that
the sum of the lengths of these lists is |C|, so we have exactly |C| iterations, in

each of which we potentially have to iterate |E(P )|
2 times to determine whether

the joint rectangle would invalidate the cover.

Lemma 12. Following the procedure described above for a list of aligned rect-
angles A sorted as described earlier produces a set of joint rectangles A∗ where
θ(A∗)+ε = θ(A) with ε ≥ 0 as large as possible while maintaining

⋃
R∈A Π(R) ⊆⋃

R∗∈A∗ Π(R∗), meaning A∗ gives an optimal reduction in cost while still cover-
ing at least the same area as A.
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Proof. Firstly, note that having overlapping joint rectangles is never optimal
since we can always join the overlapping joint rectangles, which gets rid of all
overlap while still covering the same area, so considering them in sorted order
is logical since this will never produce overlap.

Secondly, note that when we choose to join or not to join any two rectangles
of A, this does not affect whether we should join or not join the next pair of
rectangles. Consider R1 and R2 of A = {R1, R2, . . . , Rn}, if we join them, we
will then consider joining J(R1, R2) and R3. The area we would add to the
cover by joining J(R1, R2) and R3 is the same we would be adding by joining
R2 and R3. Since every choice we make is locally optimal and there is never a
need to reconsider earlier decisions, this procedure is optimal.

Note that in Lemma 12 the rectangles in different lists never overlap, since
we are working with a partition, so it makes no difference in which order we
process the lists of aligned rectangles for the same axis.

One might wonder why we have chosen to not calculate and join horizontally
and vertically aligned rectangles at the same time. This is because after we join
rectangles that are vertically aligned, we would have to recalculate the horizontal
alignments, since they may have changed during the process, and vice-versa. For
this reason, we have chosen to first calculate horizontally aligned rectangles,
then attempt to join them, then calculate vertically aligned rectangles and join
them as well. This is an arbitrary choice, whether vertically or horizontally
joining first is optimal differs from polygon to polygon and can be changed just
by rotating it. A heuristic could potentially be used to attempt to guess the
optimal order or, alternatively, we could use both orders and take the better
of the two afterward. Both of these approaches would incur a potentially non-
negligible amount of overhead.

Arbitrary joins In this method of post-processing for the partition, we con-
sider joins such as the one shown in Figure 8 as well, which are ignored by the
previous method. As we will see, this does negatively affect runtime complexity
but may offer improved solutions when compared to the previous method.

In this method, we also consider joining pairs of rectangles R1, R2 ∈ C but
unlike in the previous method, R1 and R2 need not be aligned. Instead, all that
is required is that J(R1, R2) ∈ Γ(Π(P )), meaning that the joint rectangle of R1

and R2 does not invalidate the cover.
The method works similarly to the previous one. We iterate all Rk ∈ C

and consider joining R with an R′ ∈ {Rk+1, Rk+2, . . . , Rn} with R′ in a fixed,
arbitrary order. We do not have to consider the rectangles in {R1, R2, . . . , Rk−1}
since joining these with Rk would have already been considered in previous
iterations. Ideally, we would like to reduce the cost of the cover by as much as
possible, so we choose the R′ which maximizes r = c(R) + c(R′)−J(R,R′) with
r > 0. If we find such an R′, we then remove R and R′ from C, insert J(R,R′)
at the kth position in C and continue trying to join from the kth position.
Otherwise, we continue at the (k + 1)th position.
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Figure 9: A partition where choosing to join the two red rectangles lets us
eliminate one rectangle, but joining one red rectangle with the green one and
the other with the blue one could have reduced the number of rectangles by
two.

Lemma 13. The procedure described above takes O(|C|2|E(P )|) time.

Proof. Whenever we join two rectangles, we do not move to the (k + 1)th rect-
angle, but we do remove R′ from {Rk+1, Rk+2, . . . , Rn}, so we still effectively
eliminate one iteration. Since we iterate at most |C| rectangles and for each of
them have to check the joint rectangle of it and at most |C| other rectangles,
we have O(|C|2) iterations. In each of them, we may have to check if the joint
rectangle is in Γ(Π(P )) which, as previously established, we do in O(E(P ))
time.

Note that the order in which we join rectangles can make a difference in the
cost of the post-processed cover, as can be seen in Figure 9. It is again not clear
if an optimal order could be calculated in advance or how costly this would be.

4.4 Greedy Strip Cover

We have already briefly discussed this approach by Kumar and Ramesh [3] in
subsection 3.1. We use their algorithm, which offers the best currently known
approximation ratio for RPC, for the WRCP, but with some additional post-
processing steps to improve the output cover.

In our version of their algorithm, which we will refer to as the greedy strip
cover algorithm for simplicity, we iterate all horizontal edges of the polygon that
have either the polygon’s exterior or a hole above them, and then, in contrast to
the original version, iterate each integer point lying on this edge and extend a 1-
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pixel-wide rectangle, whose top edge lies on the polygon’s edge as far downwards
as possible and then extend it as far left and right as possible.

Note that this means that the runtime complexity of our version is partially
dependent on the width and height of the bounding box of the polygon.

Lemma 14. The greedy strip cover algorithm runs in O(|E(P )|2wmax(w, h))
time, where w and h are the width and height of the bounding box of the input
polygon respectively.

Proof. We iterate every horizontal edge with a hole or the exterior above it,
which takes O(|E(P )|) time. For each of these iterations, we iterate at worst
every integer coordinate lying on the edge, which gives O(w) iterations, then,
we have to iterate at worst every integer coordinate downwards, while check-
ing if we can keep going downwards, which gives O(|E(P )|h), since we have to
check if the bottom edge of the rectangle is intersecting with an edge of the
polygon in a way that prevents it from expanding further. At the end, we ex-
tend to the left and right, which again are at worst w iterations, for each of
which we have to check if we can expand further on the sides of the rectangle
again, which gives O(|E(P )|w). The loops which extend the rectangle down-
wards and to the sides are sequential rather than nested, so the extending part
is O(max(w, h)|E(P )|), which together with O(|E(P )|) and O(w) from earlier
gives O(|E(P )|2wmax(w, h)).

4.4.1 Post-processing

Removing redundancies As for the greedy weighted set cover, we also need
to remove fully redundant rectangles from the greedy strip cover. Since we
avoid enumerating the base rectangles in the greedy strip cover since they are
not needed for the algorithm to work, we instead determine whether a rectangle
is redundant by checking if every pixel that it contains is already contained in
some other rectangle of the cover C. This is the same scenario as we saw in
Lemma 6, except we are using Π(P ) instead of B(P ), so the runtime complexity
of this process is O(|C||Π(P )|).

Likewise, we trim redundant rows and columns the same way as well, which
also takes O(|C||Π(P )|) time, as we saw in Lemma 7.

Splitting A solution generated by this algorithm in practice often includes a
lot of non-trimmable overlap, which is perfectly fine for minimizing the number
of rectangles in the cover, but not ideal when the area of the rectangles is also a
factor, as in the WRCP. We address this by attempting to split the rectangles in
the cover into smaller rectangles when doing so improves the cost of the cover.
By splitting a rectangle R, we mean removing R from C, which may introduce
gaps in the cover, which we fill by adding new rectangles to the cover. By gap
we mean a polygon that is made up of a maximal set of pixels G ⊆ Π(P ) where
every pixel in the set shares at least one of its edges with another pixel in the
set and none of the pixels are contained in any rectangle of C. Note that since
the gaps contain maximal sets of pixels, we know that there are no gaps that
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Figure 10: A cover where removing the red rectangle produces four gaps in the
cover, two of which are not rectangular.

contain pixels that share an edge with a pixel from any other gap. These gaps
are not necessarily just rectangular but can be more complex polygons as well
as shown in Figure 10.

Lemma 15. For a set of gaps G = {G1, G2, . . . , Gm} created by removing a
rectangle R from a cover C, the total number of vertices of the gaps

∑
G∈G |V (G)|

is O(|C|2).

Proof. The gaps in the cover are created by subtracting the union U of the
rectangles in C − {R} from R. According to [17], the number of vertices in a
union of n rectangles is O(n2) at worst. We thus have O((|C| − 1)2) = O(|C|2)
vertices in U .

Let I,X ⊆ V (U) denote the set of vertices of U lying inside the interior or
on the boundary of R and the set of vertices of U lying outside R respectively.
Due to how I and X are defined, we have I ∪X = V (U) and I ∩X = ∅.

When we subtract U from R, we get our set of gaps, G. Let V denote the
set of all vertices belonging to gaps in G. For any arbitrary vertex v ∈ V we
may have v ∈ I, v ∈ V (R) or neither. If we have neither, v must lie on the
boundary of R and have been the result of an edge u ∈ E(U) intersecting an
edge r ∈ E(R). Since v /∈ I, but u intersects r, we know that one endpoint of u
is in I and the other in X.

As we can find one vertex in either V (R), I or X for every vertex in V, we
have at most |V (R)| + |I| + |X| vertices in V. Since |V (R)| = 4 and I ∪ X =
V (U) = O(|C|2), we have O(|C|2) vertices in V overall.

Bounding box gap cover We now consider two ways to cover these gaps.
The first is attempting to cover each gap G with its bounding box, meaning the
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smallest rectangle R ∈ Γ(Π(P )) such that G ⊆ Π(R). If splitting the rectangle
into bounding boxes of its gaps reduces the cost, we perform the split, otherwise,
we consider splitting the next rectangle in the cover.

Note that this approach is somewhat limited. If removing the rectangle from
the cover only gives us one gap, the bounding box of the gap will be the original
rectangle itself, since we remove fully redundant rectangles and trim redundant
rows and columns before attempting to split the cover this way.

Lemma 16. Bounding box gap cover runs on a cover C in O(|C|3) time.

Proof. As we saw in the proof of Lemma 15, if we exclude a rectangle R from the
cover C, the total number of vertices among the resulting gaps is O(|C|2). The
polygon using the fewest vertices is a rectangle. If every gap is a rectangle, we
have O(|C|2) gaps. As we need to iterate every rectangle in the cover and every
gap that is left when removing it from the cover, this gives O(|C|3) iterations
overall.

Partition gap cover The second way we consider to cover gaps is to view
each gap as a polygon and to create a rectangle partition of it using the partition
algorithm we discussed in subsection 4.3 without post-processing the resulting
partition. If splitting the original rectangle into a partition of its gaps reduces
the cost of the cover, we perform the split, otherwise, we consider splitting the
next rectangle the same way.

This approach often gives better results than the bounding box cover, but
it also has worse runtime complexity.

Lemma 17. Partition gap cover runs on a cover C in O(|C|6) time using
Ohtsuki’s [21] partition algorithm.

Proof. Again, the total number of vertices among the gaps when excluding a
single rectangle from the cover is O(|C|2) due to Lemma 15. Since Ohtsuki’s
algorithm runs in O(n2.5) time where n is the number of vertices in the polygon,
the worst case occurs when all O(|C|2) vertices belong to a single gap. In this
case, we take O((|C|2)2.5) = O(|C|5) time to cover the gap. Since we do this
for every rectangle in C, we take O(|C|6) time overall.

Using an alternative [14] to Ohtsuki’s algorithm, the runtime could be im-
proved to O(|C|((|C|2)1.5 log |C|2)) = O(|C|4 log |C|2).
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Figure 11: Class diagram for main C++ part of the program.

5 Implementation

5.1 Code

5.1.1 Instance Conversion

Since we are working with polygons, we decided to use the Well-known text
representation of geometry 2 (WKT) file format to store the input polygons for
our experiments, which is well suited for this task. As all instances from the
repository we used3, which is provided by Koch and Marenco in [18], were not
in this format, we wrote a Python 3.114 script to convert both black-and-white
images as well as a custom format used by Heinrich-Litan and Lübbecke [13],
from whom we received a few additional instances, to the WKT format. For
this purpose, we used the Pillow5, Shapely6, rasterio7 and numpy8 libraries.

5.1.2 Algorithmic Framework

All evaluated algorithms including their post-processing steps were implemented
in C++17. The Computational Geometry Algorithms Library 9 (CGAL) was
used to construct polygons from WKT files, to verify covers returned by the
algorithms and as part of some of the algorithms.

Each algorithm uses a common interface with a getCoverFor() function
which takes an input polygon and a tuple of the costs, (α, β), as input pa-

2https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
3https://drive.google.com/drive/folders/1EPj1w_P8Bgg_86dCzOWJVu3JnFsEbrPO
4https://www.python.org/
5https://python-pillow.org/
6https://pypi.org/project/Shapely/
7https://pypi.org/project/rasterio/
8https://numpy.org/
9https://www.cgal.org/
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rameters and returns a vector of Rectangle instances, which is the resulting
cover.

For our integer linear programming implementations, we used Gurobi10 with
an academic license.

The post-processors use the same interface as the algorithms and can be
wrapped around previous algorithms/post-processors to refine results.

Each algorithm is run on a given problem instance by an AlgorithmRunner

class, which verifies solutions returned by the algorithm and also records various
data, such as the time taken by the algorithm, the cost of the cover, the number
of rectangles in the cover, etc.

The main part of the program offers a command-line interface that can be
used to run any algorithm with any post-processing steps on a provided input
WKT file. The results are output in a JSON 11 file at a user-specified location.

Additionally, we implemented a separate program in C++ that can be used
to run multiple algorithms and post-processors on multiple instances with mul-
tiple different costs to make it easier to run many experiments in sequence. This
program also makes it possible to specify a timeout in minutes after which any
given experiment is terminated if the corresponding algorithm did not return a
solution within this time frame.

Basic functionality of the algorithms as well as some of the other classes was
tested using the GoogleTest12 framework.

Boost13 was used in many places throughout the code as it is already a
dependency of CGAL and offers useful functionality for many areas.

All three C++ parts of the project can be built using CMake14.

5.1.3 Visualization

To get a sense of how the algorithms cover a given polygon, it is useful to be
able to visualize their results. For this purpose, we implemented a visualization
script in Python 3.11 using many of the same libraries which were used for the
instance conversion script.

This script can be used to visualize the data from the JSON result files
output by the main C++ program. A sample of such a visualization for the
cover of a small polygon is shown in Figure 12, though covers with more and
larger rectangles can also be visualized the same way without problems.

5.2 Usage

The main program, covering_run, has a few command-line parameters that
can be passed to it, which are explained when using covering_run --help.
An example invocation may look like this

10https://www.gurobi.com/
11https://www.json.org/json-en.html
12https://github.com/google/googletest
13https://www.boost.org/
14https://cmake.org/
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Figure 12: Example output of the result visualizer.

./covering_run --input instances/caltech/image_0382.wkt

--costs 100 1 --algorithm strip --postprocessors prune trim

--output result.json

For covering_batch, which allows running multiple algorithms on multiple
instances, covering_batch --help also gives an overview of the interface. An
example invocation may look like this

./covering_batch --instances instances/caltech 100 500 %%

instances/icons 10 20 --algorithms ilp partition

--postprocessors none %% join-full

--results ./results

6 Evaluation

6.1 Methods for Evaluation

Experiments were run on all instances from the repository15 provided by Koch
and Marenco [18] as well as on four additional instances we obtained from
Heinrich-Litan and Lübbecke [13].

Each experiment was run three times with different cost parameters, with
larger α values favoring covers with fewer rectangles and more overlap and

15https://drive.google.com/drive/folders/1EPj1w_P8Bgg_86dCzOWJVu3JnFsEbrPO
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smaller α values favoring more rectangles and less overlap. β was kept at 1 for
all experiments.

For the instance sets containing larger polygons, caltech, nasa, ccitt,
aerials, dats16 and textures, we ran each experiment with α = 100, α = 500
and α = 1000. For the icons instance set, which contains small polygons, we
instead used α = 5, α = 10 and α = 20.

For the nasa, ccitt, aerials, dats and textures instance sets, a timeout
of one hour was used, while a timeout of 20 minutes was chosen for the caltech

instance set, as it contains about 800 instances and is generally less complex
than the other instance sets containing large polygons. No timeout was used
for the icons instance set since every algorithm finished almost instantly due
to the small size of the instances.

The following algorithms were evaluated:

� partition: Partition into rectangles without post-processing

� partition join: Partition into rectangles with aligned joins as post-
processing

� partition join-full: Partition into rectangles with arbitrary joins as
post-processing

� strip prune trim: Greedy strip algorithm with removal of redundant
rectangles and trimming of redundant rows/columns as post-processing

� strip prune trim bbox-split: strip prune trim followed by attempt-
ing to split rectangles in the cover and covering the gaps using bounding
boxes

� strip prune trim partition-split: strip prune trim followed by
attempting to split rectangles in the cover and partitioning the gaps into
rectangles

� greedy: Greedy set cover algorithm without post-processing

� greedy prune trim: Greedy set cover algorithm with removal of re-
dundant rectangles and trimming of redundant rows/columns as post-
processing

� ilp: Integer linear program

Table 1 gives an overview of the characteristics of each instance set we used.
The “set size” shows how many instances, meaning WKT files, are part of the
corresponding instance set. Since an instance in an instance set may contain
several polygons, the third column shows the average number of polygons in
each instance of the instance set. The average maximum vertices, average max-
imum holes and average maximum area columns show the average of the largest

16day.dat, marbles.dat, mickey.dat and night.dat instances from [13]
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corresponding observed feature from each instance in the instance set. Meaning
that an average maximum vertex value of 12 for an instance set indicates that
the polygon with the most vertices in an instance of the instance set has 12
vertices on average. We have chosen to highlight these features, as it is usually
the largest and most complex polygon in an instance that takes up the bulk of
execution time.

set set size
avg.
polygons

avg. max.
vertices

avg. max.
holes

avg. max.
area

aerials 38 12587.03 38565.95 3811.42 215934.61
caltech 801 97.16 1331.09 81.71 24626.81
ccitt 8 1540.38 6608.25 43.88 229907.75
dats 4 5208.00 45629.25 7442.25 155889.25
icons 168 2.92 24.30 0.60 50.03
nasa 13 2899.54 40708.62 2791.69 809030.23
textures 23 659.87 41156.39 3755.91 289153.61

Table 1: Characteristics of each set of instances the algorithms were evaluated
on.

6.2 Results of Evaluation

Our experiments were performed on a system with Ubuntu 22.04.1 LTS, AMD
Opteron 6174 CPU and 32 GB of RAM.

To visualize the results of our evaluation we have chosen to use performance
plots. These were produced as follows:

� For every experiment with the parameters we are interested in, the best
runtime/solution m∗ of any of the algorithms we are interested in is
recorded

� For each of these experiments and each of these algorithms, the ratio m∗

m
between the algorithm’s runtime/solution m and m∗ for this particular
experiment is computed

� Each algorithm’s ratios are sorted in ascending order and plotted on the
Y axis

A value of one indicates that the algorithm performed the best in the cor-
responding metric while a value close to zero indicates that the algorithm per-
formed much worse than the best one.

The X-axis shows the number of experiments for which the algorithm’s ratios
are smaller or equal to the one at that X-coordinate. For example, if an algo-
rithm’s ratio at X-coordinate 5 is 0.8, this means that there were five relevant
experiments for which the algorithm’s ratio was less than or equal to 0.8.
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Figure 13: Quality of each algorithm’s solution across all experiments for which
every algorithm returned a solution.

6.2.1 Result Quality

Figure 13 shows the quality of each algorithm’s solution for every experiment
for which all algorithms returned a solution. As we can see, ilp returned the
solution with the lowest total cost for every experiment during which it managed
to calculate a solution in the allotted time without running out of memory. It
is also visible that all versions of the partition approaches have a ratio of 0.9 or
better for the vast majority of these experiments, generally performing better
than the other non-ilp algorithms.

While this gives a quick overview, looking at results for specific instance sets
and α-costs is going to prove more insightful.

Figure 14 shows two performance plots for the solutions returned by the
algorithms for the icons instance set, the one on the left with α = 5 and the
right with α = 20. In general, we can see that for these small instances many of
the evaluated algorithms return a solution that costs as much as the one returned
by ilp. In both plots, we can observe that the greedy strip algorithm and
partition algorithms generally outperform the two greedy set cover algorithm
versions. Comparing the right and left plots, we can see that with increased
α-costs the ratios of the algorithms worsen somewhat and that the difference in
the costs of the solutions returned by the algorithms decreases.

We can observe similar behavior in Figure 15 which shows the same situation
for the caltech instance set with α = 100 and α = 1000. While the partition
approaches give very good results across the board in the left plot, they again
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(a) Quality of each algorithm’s solution for
the icons instance set with α = 5.
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(b) Quality of each algorithm’s solution for
the icons instance set with α = 20.

Figure 14: Different performance plots for different costs for the icons instance
set. All experiments which were performed using the instance set are shown, as
none timed out or ran out of memory.
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(a) Quality of each algorithm’s solution for
the caltech instance set with α = 100.

0 100 200 300 400

0.8

0.85

0.9

0.95

1

Number of experiments

b
es

t
to

ta
l

co
st

/a
lg

or
it

h
m

to
ta

l
co

st

Instance set ”caltech” (α = 1000, β = 1)

greedy
greedy prune trim
ilp
partition
partition join
partition join-full
strip prune trim
strip prune trim bbox-split
strip prune trim partition-split

(b) Quality of each algorithm’s solution for
the caltech instance set with α = 1000.

Figure 15: Different performance plots for different costs for the caltech in-
stance set. Only experiments for which all evaluated algorithms completed are
shown.
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Figure 16: Different performance plots for different costs for the aerials, ccitt,
dats, nasa and textures instance sets. Only experiments for which all evalu-
ated algorithms (except ilp) completed are shown.

worsen in the right plot with the increased α-cost, while the greedy strip and set
cover algorithms improve somewhat. It is visible that the greedy strip algorithm
does especially poorly on this instance set, in particular with the higher α-cost,
as it performs worse, or at best similarly, to the greedy set cover approaches.
In the right plot, we can also see that the post-processing of the greedy strip
algorithm does not appear to improve solutions much, if at all, in this case.
This is presumably due to splits being unlikely to decrease the overall cost of
the cover since the α-cost is so large. In contrast, the post-processing of the
partition appears to pay off in both plots, as there is a clear gap between the
plain partition and the post-processed partitions in both of them. It makes
sense that the partition approaches would still yield good solutions on these
instances since, as Table 1 shows, these instances generally still have few holes
and few vertices compared to some of the other instance sets.

Figure 16 shows performance plots for the aerials, ccitt, dats, nasa and
textures instance sets with α = 100 on the left and α = 1000 on the right.
Note that the instances in these sets proved largely too complex for ilp to
complete, so for these plots we are only comparing the results of the other
algorithms. We can see that the partition algorithms still perform well in both
plots, though the strip prune trim partition-split algorithm in particular
does perform better with the increased α-cost on the right. The two greedy set
cover algorithms also perform much better in the right plot, while performing
poorly in comparison to the other algorithms for the lower α-cost.

Overall, it appears that the partition approaches followed by joining, espe-
cially partition join-full, yield very good results for experiments with few
holes and/or small α-costs, while the greedy strip cover approaches followed
by splitting, especially strip prune trim partition-split, may give better
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algorithm
mean time
in seconds

out of
time/memory

partition 3.71 9
partition join 3.97 9
partition join-full 27.75 79
strip prune trim 4.17 3
strip prune trim bbox-split 7.14 3
strip prune trim partition-split 7.59 3
greedy 59.84 116
greedy prune trim 59.96 116

Table 2: Arithmetic mean runtime of each algorithm (except ilp) across all
experiments for which all of the listed algorithms completed, as well as the
number of times each of them ran out of either time or memory before it could
complete.

results for experiments where there are both many holes as well as high α-costs.
The greedy set cover approaches overall appeared to usually be outperformed
by at least one of the previously mentioned approaches, seemingly performing
especially poorly for low α-costs. We can also observe that our post-processing
usually improves the results of the algorithms by a non-negligible margin, as
there are often large gaps between the plain versions of algorithms and their
post-processed variants in the plots.

6.2.2 Runtime Results

Table 2 gives an overview of each evaluated algorithm’s average runtime across
all experiments for which all of them completed, except ilp which we have
excluded from our runtime evaluation due to its large number of timeouts and
very poor speed.

As can be seen, the partition-based approaches are the fastest on average,
except the join-full version, for which the post-processing turns out to be
very costly in practice, while the join step showed a comparatively negligible
impact on runtime.

The strip prune trim version of the greedy strip algorithm on average
took a similar amount of time as partition and partition join. Notably,
bbox-split and partition-split appear to incur a similar runtime cost when
used after strip prune trim, which is encouraging as partition-split gen-
erally seems to yield higher quality solutions than bbox-split.

Figure 17 shows that the ratios of the algorithms appear to stay similar
when α-costs increase, except the partition join-full algorithm, which takes
longer in comparison in the right plot with the higher α-costs. This is likely
because the algorithm checks if joining rectangles would lead to a decrease
in the cost of the overall cover before checking if the joint rectangle is valid.
With higher α-costs, joins are more likely to be worth it, so the algorithm has
to perform more checks for validity in this case, explaining the comparatively
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Figure 17: Different performance plots for the runtime of algorithms (except
ilp) on the caltech instance set with different costs. Experiments for which
all algorithms (except ilp) completed are shown.

worse runtime. Interestingly, the simpler partition join does not show a
similar deterioration in runtime between the two plots. In combination with
the performance plots of the algorithm’s quality, this indicates that join may
be a good alternative to join-full when runtime is a concern and α-costs are
large.

The performance plots for runtime on the larger instance sets shown in
Figure 18 contrast the plots of the caltech instance set seen in Figure 17. While
in the caltech instance set we saw that the partition and partition join

algorithms generally finished faster than the greedy strip algorithms, the reverse
was generally true for the larger and more complex aerials, ccitt, dats,
nasa and textures instance sets. This may be due to the runtime of the
partition approaches depending on the number of vertices of polygons, while
the runtime of the greedy strip algorithms depends partially on the number of
vertices and partially on the dimensions of the polygons. If we look at Table 1,
we can see that the larger instance sets generally have a larger increase in
their average maximum vertex count than in their average maximum polygon
area when compared to the caltech instance set, which could explain why the
relationship between the runtime of the partition algorithms and greedy strip
algorithms appears to change between the two different sets of performance
plots.

We can again see that the runtime of the partition join-full algorithm
deteriorates significantly in the right plot of Figure 18, as it timed out much
more frequently for α = 1000, while all other algorithms show very similar ratios
in both plots.
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Figure 18: Different performance plots for the runtime of algorithms (except
ilp) on the aerials, ccitt, dats, nasa and textures instance sets with dif-
ferent costs. All experiments are shown, an algorithm timing out or running out
of memory during an experiment is indicated by the absence of a data point for
the algorithm at the given X-coordinate.

Overall, the greedy set cover approaches exhibited very poor runtime perfor-
mance, being consistently outperformed by all other plotted algorithms. While
on average the partition algorithms show the best runtime, with the excep-
tion of partition join-full, we saw that the greedy strip cover algorithms
generally finished faster on larger instances specifically. Importantly, specifi-
cally partition join-full showed worsening runtime with increasing α-costs,
while partition join did not appear to suffer from the same behavior, while
still providing a similar improvement in the cost of the cover to join-full.

7 Conclusion & Future Work

7.1 Summary

In this thesis, we have described the WRCP and shown a formulation of the
integer linear program for the problem, as well as several heuristic algorithms,
which, as shown in our experiments, provide high-quality solutions in practice.

In particular, the partition algorithm followed by full or aligned joining of the
partition appears to give surprisingly good results in practice even on instances
with many holes.

As the size of the polygons, the number of holes and α-costs increase, the
greedy strip cover algorithm, followed by pruning, trimming and partition-
splitting of the cover, as well as the greedy set cover algorithm, followed by prun-
ing and trimming of the cover, appear to sometimes outperform the partition-
based approach, though the greedy set cover algorithm in particular proves slow
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in our experiments due to its need to enumerate the set of candidate rectangles
beforehand.

7.2 Limitations of the Approaches

In the interest of preserving reasonable runtime performance, we perform only
a single round of select post-processing methods. Repeating, randomizing or
adding further post-processing may potentially yield slightly improved solutions.

As stated, we were unable to formally prove Conjecture 1, but have presented
experimental evidence in its favor.

Due to the large number of experiments and often long runtimes, we were
only able to run each experiment once. There is thus a chance of some mea-
surement error within the runtime data. In addition, since we have fewer large
instances and algorithms were more likely to time out or run out of memory
when processing them than for smaller instances, we inherently have less data
for large instances, both in terms of runtime and quality of solutions.

7.3 Outline of Future Work

As far as we are aware, the WRCP specifically has not been studied before.
There are thus plenty of possible avenues for further research, both into the
practical as well as theoretical aspects of the problem.

7.3.1 Hardness of the WRCP

As we have seen in subsection 3.1, RPC, which is NP-hard [20], is very similar
to the WRCP when α = 1 and β = 0. Likewise, when α = 0 and β is arbitrary,
the WRCP is trivial since we can use arbitrarily many rectangles and are just
minimizing the covered area, which can even be accomplished by simply filling
the polygon with non-overlapping unit squares. As the hardness of the problem
depends on the input polygon as well as the costs, it may be interesting to study
what exactly makes a particular instance of the problem “hard” and whether
we could easily detect such cases in practice.

7.3.2 Approximability of the WRCP

While our heuristics appear to provide good solutions in practice, we do not give
approximation factors for them in this thesis, except for the greedy weighted set
cover implementation, which is known to give O(log n) approximation [6], but
does not perform as well as others in our experiments, while also showing poor
runtime performance. We also do not provide results for the approximability of
the WRCP in general, though again, for α = 1 and β = 0, it is worth noting that
it is not currently known whether there exists a constant factor approximation
for RPC in polynomial time [13].
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7.3.3 Integer Linear Program for RPC

Our formulation of the integer linear program, which uses the base rectangles of
the polygon, could yield practical improvements in formulations of the integer
linear program for RPC, as the number of base rectangles in a polygon can be
much smaller than the number of pixels. In such cases, a formulation similar to
ours for RPC could drastically reduce the number of constraints of the integer
linear program when compared to using pixels.

In addition, Conjecture 1 appears more easily provable for RPC than for the
WRCP; As we already saw, in RPC it suffices to consider only maximal rectan-
gles which fit inside of the polygon for the cover [13]. Every rectangle which has
the property that it is maximal has to fully contain every base rectangle which
it intersects, otherwise, we could extend the rectangle until it fully contains all
base rectangles which it intersects, contradicting it being maximal. We know
that extending the rectangle this way cannot cause it to become invalid, since
there are no holes we could run into, as there are none inside base rectangles due
to their definition. It then follows that any relevant rectangle for RPC must be
the union of some subset of B(P ), meaning a formulation of the integer linear
program for RPC using base rectangles for the constraints would give optimal
solutions for RPC.
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[13] Heinrich-Litan, L., and Lübbecke, M. E. Rectangle covers revisited
computationally. ACM J. Exp. Algorithmics 11 (feb 2007), 2.6–es.

[14] Imai, H., and Asano, T. Efficient algorithms for geometric graph search
problems. SIAM J. Comput. 15, 2 (may 1986), 478–494.

39



[15] Johnson, D. S. Approximation algorithms for combinatorial problems. In
Proceedings of the Fifth Annual ACM Symposium on Theory of Comput-
ing (New York, NY, USA, 1973), STOC ’73, Association for Computing
Machinery, p. 38–49.

[16] Karp, R. M. Reducibility among combinatorial problems. In Proceedings
of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA (1972), R. E. Miller and J. W. Thatcher, Eds.,
The IBM Research Symposia Series, Plenum Press, New York, pp. 85–103.

[17] Keller, C., and Smorodinsky, S. On the union complexity of families
of axis-parallel rectangles with a low packing number, 2017.

[18] Koch, I., and Marenco, J. A hybrid heuristic for the rectilinear picture
compression problem. 4OR (Jun 2022).

[19] Lovász, L. M. On the ratio of optimal integral and fractional covers.
Discret. Math. 13 (1975), 383–390.

[20] Masek, W. Some np-complete set cover problems. unpublished
manuscript, MIT Laboratory for Computer Science (1978).

[21] Ohtsuki, T. Minimum dissection of rectilinear regions. In Proc. 1982
IEEE Symp. on Circuits and Systems (1982), pp. 1210–1213.

[22] O’Rourke, J. The complexity of computing minimum convex covers for
polygons. In 20th Annual Allerton Conference on Communication, Control,
and Computing (1982), pp. 75–84.

[23] O’Rourke, J., Suri, S., and Tóth, C. D. Polygons. In Handbook of
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