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Abstract

We performed an experimental study of several single-source reacha-
bility algorithms for the fully dynamic all-pairs reachability problem. Not
only were the single-source algorithms generalized to all-pairs algorithms,
but their graphs were also partitioned to further enhance their perfor-
mance. Additionally we implemented some simple minded algorithms,
since previous studies showed they were the overall best algorithms.
We tested our algorithms on three different real-world graphs and the
results show that a simple static bidirectional breadth-first search, which
was to our knowledge never tested for this specific problem, beats every
one of our optimized algorithms. Even with tuning the many parameters
of our algorithms, we were not able to beat the static bidirectional search.
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1 Introduction

Graphs and their algorithms can be useful mathematical tools to represent real
world applications. Some of those can be represented by the all-pairs reach-
ability problem, which asks for a digraph G = (V,E) if a target vertex t is
reachable from a source vertex s over a directed path from s to t. There are
multiple applications for this problem ranging from biological networks to XML
databases[12].
Some of these applications have a dependence on time and therefore their graphs
and algorithms also have to be dynamic, meaning that they change over time.
Dynamic versions of this problem can either be incremental, if only edge inser-
tions are allowed, decremental, if only edge deletions are allowed, or if both are
allowed it is called fully dynamic. This thesis deals with the fully dynamic ver-
sion of the problem, while also answering the question of reachability(queries)
between any two vertices. Algorithms designed for this problem face the chal-
lenge to efficiently handle dynamic changes to the graph, while also being able
to answer queries in a reasonable time frame. Experimental studies on a range
of such algorithms have been conducted in [8] and [13], where for most cases in-
volved dynamic algorithms which maintain the transitive closure( Information
of reachability for all vertex pairs) could not beat simple minded algorithms
which computed the reachability for a vertex pair from scratch for every query.
Contrary to that a recent experimental study[10] dealt with the similar prob-
lem of single-source reachability, which asks the question of reachability always
from the same fixed source vertex s. The study showed that simple dynamic
algorithms which can update themselves for graph changes do show the best
performance for the single-source case.

This thesis deals with the generalization of the single-source reachability al-
gorithms from [10] to all-pairs reachability algorithms and investigates if they
are viable for the more general problem. Further the algorithms are optimized
by partitioning the graph G into k subgraphs with the partitioning program
KaHIP[21]. This optimization approach is inspired by [4], where it was used
for faster route planning. Multiple different algorithms using the partitioned
graphs have been implemented. They vary in their complexity to keep a dy-
namic structure, from maintaining generalized dynamic single-source reachabil-
ity algorithms with all their partitioned graph structures to just maintaining
the partitioned graph structures for a correct partition and using only static al-
gorithms on them. All the algorithms working on partitioned graphs have been
tested and evaluated against unpartitioned static algorithms, which showed to
be among or even the best in [8] and [13].
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Figure 1: An example of a partitioned graph. Red arrows represent real overlay
arcs, yellow arrows are subgraph overlay arcs and green arrows are normal edges
inside the subgraphs.

2 Preliminaries

2.1 Concepts

Let G = (V,E) be a digraph with vertex set V and edge set E. Further let
n = |V | and m = |E|, with d = m

n being the density of G. Each edge (u, v) ∈ E,
also referred to as an arc, has a head v and a tail u. Vertices u which have a
edge (u, v) ∈ E are called in-neighbours of v, while vertices v are called out-
neighbours of u. A directed path of edges is a list of edges between two vertices,
where the head of the first edge is the tail of the second, the head of the sec-
ond edge is the tail of the third and so on. A target vertex t is reachable from
a source vertex s, if there is a directed path of edges in G from s to t. The
transitive closure is a digraph G+(V,E+) containing the set of all vertices V of
G(V,E) and edges (s, t) ∈ E+ for all vertices s, t ∈ V if t is reachable from s
within G(V,E). [6]

A partitioning of a graph G(V,E) with an integer k > 1 is a division of the
vertex set V into k subgraphs of nearly equal size while also minimizing another
objective [20]. The objective for this problem is to minimize the amount of edges
running between the subgraphs. Each subgraph Gs = (Vs, Es) ⊂ G contains a
subset of vertices of G, so (Vs ⊂ V ) and all the arcs (u, v) ∈ Es where u, v ∈ Vs.
Let Gv = (Vv, Ev) and Gu = (Vu, Eu) be two different subgraphs (Gv∩Gu = ∅).
The overlay graph Go = (Vo, Eo) is a graph that contains all arcs (u, v) of the
original graph and all tails and heads of such arcs, where u ∈ Vu and v ∈ Vv.
Each set Vs ∩ Vo of vertices is referred to as the border vertices Bs of the sub-
graph Gs = (Vs, Es). This means that the vertex size of the overlay graph no is
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the same as the sum of all border vertices

no =
∑
s

Bs

The overlay graph Go additionally contains an arc (s, t) between border vertices
s and t of the same subgraph, if t is reachable from s within that subgraph.
Therefore the overlay graph includes the transitive closures of all subgraphs,
without the vertices that are not border vertices. The arc size mo of the overlay
graph thus is

mo = mo/r +mo/s

with mo/r being the amount of real overlay arcs between different subgraphs
and mo/s being the amount of subgraph overlay arcs between border vertices of
the same subgraph. Notice that the upper bound for mo/s is

mo/s = O

(∑
s

B2
s

)
.

2.2 Related Work

Important theoretical results for the fully dynamic all-pairs reachability problem
includes an algorithm with O(n2) amortized update time and O(1) worst-case
query time [5][18]. Notice that there can’t be a better algorithm than O(n2)
worst-case for updates that answers queries in O(1), since an update may change
O(n2) values in the reachability matrix (A matrix representing the transitive
closure). There are also dynamic algorithms which can’t answer queries in O(1)
time but offer a faster update time [19].

Some of these algorithms and more simple ones have been tested and evalu-
ated in the last decade by [8] and [13]. Their results showed that simple minded
algorithms, like Breadth-First-Search, show a very good performance compared
to more complex algorithms, for some cases even beating them all. This was
especially the case for real-world graphs if the amount of queries was not too
high compared to edge deletions and insertions.
Otherwise very similar work has been done in [10], in which single-source reach-
ability algorithms have been evaluated. Their results showed that depending on
the scenario a simple minded incremental algorithm or a simplified decremental
algorithm that both have been made fully dynamic do show the best perfor-
mance. The algorithms of [10] will be explained in more detail in chapter 3.1,
since this thesis focuses on the all-pairs generalization of their algorithms.
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3 Algorithms

3.1 Single Source Reachability Algorithms

All of the unpartitioned all-pairs reachability (AP-Reach) algorithms are based
on different Single Source Reachability (SS-Reach) algorithms from [10], except
for the later in chapter 3.3 explained Bidirectional BFS algorithm. These SS-
Reach algorithms are explained in the following sections.

3.1.1 BFS & DFS Algorithms

Depth-first search(DFS) and breadth-first search(BFS) are simple tree search
algorithms that were dynamized in two different ways in [10], one with caching,
called caching BFS/DFS, and the other one with lazy caching, called lazy
BFS/DFS. There is also a third, most simple algorithm called static BFS/DFS,
which does not remember any information about the graph. The other algo-
rithms have a cache in which the reachability information of vertices can be
stored. The whole cache becomes invalid after an update, if a previously un-
reachable vertex becomes reachable or an arc from a reachable vertex is removed,
then the whole cache has to be built from scratch when a query is made. The
lazy algorithms differ from the caching algorithms by caching only the vertices
encountered while doing a query and not all of them. When doing a query to
a vertex that is not already in the cache, these algorithms can just continue
searching at not already cached parts of the graph. If a critical change oc-
curred(one that could change the reachability of cached vertices), the cache of
the lazy algorithms is also invalidated and the cache has to be built from scratch
for new queries.

3.1.2 Simple Incremental

The Simple Incremental(SI) algorithm works in principle like the lazy algo-
rithms but updates its cache immediately when edges are inserted or deleted to
answer queries in O(1) and maintains a reachability tree by storing the reachable
parent of each reachable vertex. Insertion updates are handled by updating the
previously not, but now reachable vertices. On deletions the algorithm either
computes everything from scratch or updates the part of the cache containing
all vertices that were known to be reachable because of the removed edge. So
all vertices that were in the sub-tree of root v when an edge (u, v) was removed,
where u is reachable and the parent of v. The update is done by computing a
reverse BFS, a BFS that handles arcs as though they were reversed, for those
vertices, to find a vertex that is known to be reachable. If such a vertex can be
found, it means that the vertex, whose reachability has to be determined, and
all its children must be reachable.
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3.1.3 Even-Shiloach Trees

The normal Even-Shiloach(ES) algorithm refers to the in [7] described decre-
mental connectivity algorithm, which in [11] was discovered to also provide a
decremental algorithm for directed SS-Reach problems and is made fully dy-
namic in [10].
When initialising, the algorithm builds a BFS tree from it’s source s. For each
vertex v encountered, the algorithm saves the lowest possible level(distance from
s) l[v] of the vertex in the tree, which will be the level of the first encounter with
v, since a BFS tree is used. Also all in-neighbours N−[v] of v are saved and the
edges (u, v) of all in-neighbours u are mapped to an index corresponding to the
position in N−[v] for fast access.
The algorithms can answer queries in O(1) by checking the level l[v]. When
l[v] =∞ it means that v can’t be reached, otherwise it has to be reachable.
When an edge (u, v) is inserted, the algorithm builds a BFS tree from v and
checks for each vertex (including v) if its level or at least its parent index can be
decreased, so that the parent of the vertex is always the in-neighbour with the
lowest level and subordinately with the lowest possible parent index. If that’s
not the case, the algorithm does not have to check the children of the vertex,
since then their level will also not be changeable.
When an edge (u, v) is removed and the edge was part of the BFS tree of the
source s, the vertex v is added to a FIFO(first in, first out)-queue. For each
vertex in the queue a new parent has to be found and perhaps its level l[v]
increased. The algorithm checks for each vertex in the queue, if it has an in-
neighbour p in N−[v] whose level is l[v]−1. If that is the case, the level l[v] does
not have to be increased and the new parent of v in the BFS tree is p. When
such a parent cannot be found, the level of v is increased by one and all its
children and v itself are again inserted into the queue. The children are inserted
because they could potentially have another parent that has the same level as
v had before the edge removal. If the level of a vertex in the queue increases to
n, the vertex can’t be reachable from s. So its level is set to ∞ and it will not
be inserted back into the queue.
In some cases the queue of vertices that have to be processed becomes so large,
that calculating everything from scratch becomes cheaper.
[10] also implemented two slightly changed versions of the algorithm called
Multi-Level ES (MES) and Simplified ES (SES). For deletions the MES algo-
rithm keeps track of the potentially lowest level parent that it encounters while
iterating through its in-neighbours and instead of being reinserted into the queue
when no parent with level l[v]−1 was found, the parent of the vertex is set to be
the in-neighbour with the lowest level. If the level of v had to be increased, all
its children are added to the queue, because they may have another in-neighbour
at the original level of v.
The SES algorithm is a simplified version which does not keep an ordered list
of all in-neighbours, instead only a pointer to the parent vertex is stored. If the
edge to the parent is deleted the algorithm just iterates arbitrarily through all
in-neighbours, instead of iterating through a ordered list and uses the one with
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Algorithm
Insertion

Time
Deletion
Time

Query
Time

Permanent
Space

Work
Space

SBFS & SDFS 0 0 O(n+m) 0 O(m)
CBFS, CDFS,
LBFS & LDFS

O(1) O(1) O(n+m) O(n) O(m)

SI O(n+m) O(n+m) O(1) O(n) O(m)
ES & ML-ES O(n+m) O(n ·m) O(1) O(n+m) O(m)

SES O(n+m) O(n ·m) O(1) O(n) O(m)

Table 1: Worst-case time and space requirements for the SS-Reach algorithms

the lowest level as the new parent. If the level had to be increased, all children
will be inserted into the queue.

3.2 The All-Pairs Reachability Algorithm based on the
Single Source Algorithms

These AP-Reach algorithms use one SS-Reach algorithm for each vertex, so
that queries from any vertex s to any vertex t can be answered by using the
SS-Reach algorithm with source s and querying it for target t. Therefore the
space requirements are all n-times higher than the SS-Reach algorithms they
are based upon. The same is also true for the initialization cost, which is just
n-times the initialization of the underlying SS-Reach algorithm.

3.2.1 Queries

When a query from vertex s to vertex t is made, the algorithm chooses the
SS-Reach algorithm associated with vertex s (e.g. with a map) and queries the
algorithm for the reachability of t. Searching for the algorithm associated with
vertex s can be done in constant time using a map. Thus the query times are
all of the same order as the SS-Reach algorithms they are based upon.

3.2.2 Arc Updates

These updates do only affect the underlying SS-Reach algorithms, since the AP-
Reach algorithms themselves do not care about arcs. The AP-Reach algorithm
has a worst-case update time of n multiplied with the worst-case time of the SS-
Reach algorithms, since there is one SS-Reach algorithm that has to be updated
for each vertex in the graph. The work space is the same as for the underlying
SS-Reach algorithm since updates for the SS-Reach algorithms are executed
sequentially.

3.2.3 Vertex Updates

When a new vertex is added to the graph, the algorithm has to create a new
SS-Reach algorithm for the new vertex, therefore the worst-case time for ver-
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Based on
SS-Reach
Algorithm

Insertion
Time

Deletion
Time

Query
Time

Permanent
Space

Work
Space

SBFS & SDFS 0 0 O(n+m) O(1) O(m)
CBFS, CDFS,
LBFS & LDFS

O(n) O(n) O(n+m) O(n2) O(m)

SI O(n · (n+m)) O(n · (n+m)) O(1) O(n2) O(m)
ES & ML-ES O(n · (n+m)) O(n2 ·m) O(1) O(n · (n+m)) O(m)

SES O(n · (n+m)) O(n2 ·m) O(1) O(n2) O(m)

Table 2: Worst-case time and space requirements for the AP-Reach algorithms

tex updates also depends on the initialization time of the underlying SS-Reach
algorithm. When a vertex is removed from the graph, the AP-Reach algorithm
has to remove the SS-Reach algorithm belonging to this vertex.

3.2.4 Static Algorithms

When using the static SS-Reach algorithms(SBFS, SDFS) the AP-Reach algo-
rithm can be optimised by using just a single SS-Reach algorithm instead of
one for each vertex, because the static algorithms do not save any information
belonging to the position of their source in the graph and using one algorithm
per vertex would therefore be a waste of memory.

3.3 Bidirectional BFS

We additionally implemented a bidirectional BFS. This algorithm searches from
source s with a BFS and from target vertex t with a reverse BFS at the same
time by switching between the BFS after a certain amount of steps. If the BFS
trees encounter each other, the search can be stopped since then there must be
a directed path from s to t. This algorithm has the advantage that it’s average
query time is significantly lower than that of an ordinary BFS, while its worst-
case time stays the same. Graph updates, like with the static BFS/DFS, are
completely ignored. Notice that for the static problem this algorithm may be
efficient for calculating the reachability of a simple vertex pair, but would not
yield any advantages over a normal BFS for calculating the whole reachability
matrix. Therefore this optimized algorithm is just useful for the dynamic version
of the problem, when single queries are made while the graph undergoes updates.

3.4 The Partitioned Algorithms

The following algorithms are inspired by another algorithm from [4], where a
multilevel partitioned graph is used for fast customizable route planning. The
algorithms of this thesis, like [4], use partitioning to divide a large graph into
multiple smaller subgraphs and an overlay graph that holds all the arcs that
run between the different subgraphs. Objective of the partitioning is to reduce
the amount of arcs that run between the subgraphs and to keep the size of all
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subgraphs almost equal.
Gs(Vs, Es) and Gt(Vt, Et) with s ∈ Vs and t ∈ Vt will be used to describe the
subgraphs of the source s and the target t. Additionally the border vertices of
s are named Bs and the ones of t are named Bt.

3.4.1 Queries

For queries the algorithms first check whether the subgraph of the source vertex
and the target vertex are the same. If so an algorithm on the subgraph can be
used to determine if the vertex is reachable in the subgraph alone. If that’s the
case the algorithm can return true, else it has to do the standard query.
The general query consists of three parts

• Finding connections from the source to the border vertices of the source
subgraph

• Finding connections from the border vertices of the source subgraph to
the border vertices of the target subgraph on the overlay graph

• Finding connections from the border vertices of the target subgraph to
the target

The Simple Partitioned Algorithm This partitioned algorithm has one
AP-Reach algorithm for each subgraph and one for the overlay graph, which
are used for reachability queries inside these graphs. First the algorithm does
queries to search for a border vertex of the source graph that is reachable from
the source vertex. When a connection to a border vertex is found, the algorithm
of the overlay graph is used to query for the border vertices of the target graph.
When such a connection is found, the algorithm of the target graph is queried
for reachability from this border vertex to the target vertex. If it happens to be
reachable, the target vertex is also reachable from the source vertex. Otherwise,
if no such connection is found, the algorithm continues with the next border
vertices. The algorithm can be optimized by removing the just queried vertex
from a temporary set of border vertices of the target graph. The set is used as
the targets for the overlay queries, so that if other connections to this border
vertex exist, they will be ignored and no redundant queries will have to be made
from it. When all possible connections over the overlay graph have been tried
unsuccessfully, there cannot be any possible path from the start vertex to the
end vertex and therefore t is not reachable from s.
The worst-case scenario would be, that the target vertex is not reachable from
any vertex of Bt or only reachable from the last vertex in Bt. Also all vertices
of Bt and Bs are reachable, but the vertices in Bt are only reachable from the
last vertex in Bs. So that for all vertices in Bs, queries have to be done to all
vertices in Bt and from the source vertex to all vertices in Bs. This results in
the following worst-case query time

O(|Bs| · qs + |Bs| · |Bt| · qo + |Bt| · qt)

12



Figure 2: An example of the worst-case for queries with the partitioned algo-
rithm (Green are successful queries, red unsuccessful queries and yellow queries
can be either one)

with qs being the worst-case query time of the source subgraph algorithm, qo
the one of the overlay graph and qt the one of the target subgraph. Without the
optimization of removing already visited vertices from Bt, the worst-case would
be

O(|Bs| · qs + |Bs| · |Bt| · qo + |Bs| · |Bt| · qt)

An example of the optimized worst-case can be seen in Figure 2. There the
border vertices of the source graph(2, 3 and 4) are all reachable from the source
vertex(1). After checking if vertex 2 is reachable, queries from vertex 2 are made
to all border vertices of the target graph which all fail. Then after checking
whether vertex 3 is reachable, the same queries from vertex 3 are made, which
also all fail. Then the same queries are made again with vertex 4 as the source
and all succeed. Then from vertex 5 and 6 queries are made to the target vertex
8, but both fail. So a query from vertex 7 has to be made. The outcome of
7 is irrelevant for the worst-case query time since it is the last possible query
that has to be done. This means that there is one query in the source subgraph
for each of its border vertices (O(|Bs| · qs)), one query from each border vertex
of the source subgraph to each border vertex of the target subgraph in the
overlay-graph(O(|Bs| · |Bt| · qo)) and one query for each border vertex of the
target subgraph in the target subgraph (O(|Bt| · qt)).

The Partitioned Super Vertex Algorithm The Super Vertex algorithm
differs from the above described algorithm only by not using an AP-Reach
algorithm for the overlay graph. Instead two additional vertices( from here on
called super vertices) are added to the overlay graph for each subgraph. One of
the two vertices has an incoming arc from each border vertex of the subgraph(
from here on called target super vertex ) and the other vertex(from here on called
source super vertex ) has an arc to all the border vertices of the subgraph. For
each source super vertex the algorithm has one SS-Reach algorithm for queries
from this vertex. When a query is made, the algorithm first queries the subgraph
algorithms of the source and the target for connections to and from the border
vertices. For each border vertex that is not reachable from the source, the arc

13



between the source super vertex and the not reachable border is removed for
the query. Similarly if there is no connection between a border vertex of the
target subgraph and the target vertex, the arc between this border vertex and
the target super vertex of this subgraph is removed. This results in the source
super vertex being a representation in the overlay graph for the original source
vertex and the target super vertex being a representation for the target vertex.
That means that only a single query on the overlay graph with the SS-Reach
algorithm of the source super vertex has to be made to the target super vertex
to determine the reachability between the original source and target vertices.
The algorithm can be optimised by immediately returning false if all the border
vertices of the source graph are not reachable or all the border vertices of the
target graph can’t reach the final target vertex.
Worst-case for the queries thus is

O (|Bs| · qs + |Bt| · qt + q̃o + ão · (|Bs|+ |Bt|) + r̃o · (|Bs|+ |Bt|))

where q̃o refers to the query time of the SS-Reach algorithm used for the overlay
graph, ão to its addition time and r̃o to its removal time.

The Bidirectional Super Vertex Algorithm We also implemented a less
sophisticated version of the Super Vertex algorithm. This algorithm, instead of
using SS-Reach algorithms on the overlay graph, uses just a bidirectional BFS
on the overlay graph to find if there is a path from the source super vertex to
the target super vertex. Since the algorithm on the overlay graph is static, there
will be no additional removal and addition time of the arcs for the algorithm.
Worst-case for the queries thus becomes

O (|Bs| · qs + |Bt| · qt + no +mo)

The BFS Overlay Algorithm This algorithm uses a simple BFS for queries
on the overlay graph and like the previously described partitioned algorithms,
a all-pairs reachability algorithm for the subgraphs. With the subgraph algo-
rithms, the algorithm first searches for the border vertices that can be reached
from the source and for the border vertices that can reach the target. Then
for each reachable border vertex of the source graph, the algorithm does a BFS
from that border vertex to find reachable border vertices of the target graph.
If a border vertex of the target graph is reachable and that border vertex can
also reach the target vertex, the target is reachable from the source.
The algorithm can potentially be enhanced by not doing a BFS from any border
vertices already encountered by a previous BFS during this query. Since if a
vertex is found in the BFS, also all the children of the found vertex must be in
the BFS of the original vertex. Therefore if the BFS from one vertex failed, a
BFS from its children also has to fail. But this optimization could potentially
also slow the algorithm down, since now for every encountered vertex it has to
be checked whether it is a border vertex of the same subgraph, so that it can
remember not to query from the encountered vertex.
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Since for each source border vertex a query has to be made if no connection is
found, the worst-case for queries is

O(|Bs| · qs + |Bt| · qt + |Bs| · (no +mo))

The Reverse BFS Algorithm This algorithm works like the above men-
tioned BFS overlay algorithm, but it also uses BFS for queries on its subgraphs
instead of all-pairs reachability algorithms. The algorithm does a normal BFS
from the source to find all reachable border vertices and a reverse BFS from
the target vertex to all its border vertices to find all border vertices which can
reach the target. Then like the Overlay BFS algorithm, a BFS is done to search
if a reachable source border vertex can reach a target border vertex that can
reach the target. The potential optimization of not doing BFS from encountered
border vertices also applies.
The worst-case query time for this algorithm is

O(ns +ms + nt +mt + |Bs| · (no +mo))

with ns/nt being the amount of vertices of the source/target subgraph and
ms/mt the amount of arcs of the subgraph.

The Fully Reverse BFS Algorithm This algorithm is the same as the
reverse BFS algorithm, but uses a bidirectional search on the overlay graph.
The search is done by starting with a BFS that uses all the source border
vertices as roots and a reverse BFS that uses all the target border vertices as
roots. If the BFS of the source and the reverse BFS of the target intersect at
some point, the target must be reachable. The worst-case query stays the same

O(ns +ms + nt +mt + |Bs| · (no +mo))

3.4.2 Arc Updates

If an arc is added to a partitioned algorithm there are two cases to distinguish.
In the first case head and tail of the arc belong to two different subgraphs, then
the algorithm has to forward the change to the overlay graph and if the head
and/or tail are not already present there, also add those vertices to the overlay
graph.
In the second case if head and tail belong to the same subgraph, the algorithm
can just forward the change to the subgraph, but it then has to check if the
reachability from the border vertices of this subgraph to other border vertices
of this subgraph has changed. This can be done by checking the reachability
from every border vertex to every other border vertex of the same subgraph. If
there is such a new connection, a new arc is added to the overlay graph between
the reachable borders which represents the reachability inside the subgraph.
This is important because vertices could be reachable over a connection inside
of a third subgraph which lies in between the target and the source subgraph of
the query.
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Arc removals are handled similarly. First the algorithm checks to which graph
the arc belongs and removes it from the graph. If the graph is the overlay graph,
it can happen that a vertex then is no longer relevant in the overlay graph, since
the last of its real overlay arcs was removed, then the vertex should also be re-
moved from the overlay graph.
If the graph is a subgraph, the reachability between the border vertices of the
subgraph has to be checked, to find if arcs of the overlay graph that run between
the border vertices of this subgraph have to be removed.

The worst-case update time for arc changes thus always includes

O(|Bs| · qs/all)

with Bs being the set of border vertices of the subgraph that is updated and
qs/all the query time for finding possible connections to all the other border
vertices of the subgraph. In the following the different specific update procedures
of the partitioned algorithms are described in detail.

The Simple Partitioned Algorithm The worst-case update time for sub-
graph arc changes is

O(|Bs|2 · (qs + uo) + us)

with B being the set of border vertices of the subgraph, qs the query time of the
all-pairs subgraph algorithm and us the update time of the all-pairs subgraph
algorithm and uo the update time of the all-pairs overlay algorithm. For changes
in the overlay graph, this of course only becomes the update time of the overlay
algorithm, which is

O(uo)

The Partitioned Super Vertex Algorithm Since the algorithm doesn’t
use an all-pairs reachability algorithm for its overlay graph and instead only
k single-source reachability algorithms, the updates become much cheaper. If
only an update in the overlay graph has to be made, the update time becomes

O(k · ũo)

with ũo being the update time of the single-source overlay algorithms. If the
update happens in a subgraph, the worst-case time is

O(|Bs|2 · (qs + k · ũo) + us)

The Bidirectional Super Vertex Algorithm This algorithm has no dy-
namic overlay algorithm that has to be maintained, therefore the update time
becomes

O(|Bs|2 · qs + us)
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The BFS Overlay Algorithm Like with the previous algorithm there is no
dynamic overlay algorithm that has to be updated, so the worst-case update
time is also

O(|Bs|2 · qs + us)

The Reverse BFS Algorithm Updates in the overlay graph also do not
concern this algorithm. If an update in a subgraph has to be made, the algorithm
now has to do a BFS for new or removed connections between border vertices
inside the subgraph to add those as arcs in the overlay graph. This results in a
worst-case update time of

O(|Bs| · (ns +ms))

Otherwise there are no updates to be made, since all used reachability algorithms
are static.

The Fully Reverse BFS Algorithm Updates work exactly like for the
previous algorithm, therefore the worst-case update time is

O(|Bs| · (ns +ms))

3.4.3 Vertex Updates

Newly added vertices will not be immediately added to the algorithms partition
structure, instead adding the new vertex is delayed until the first arc of this ver-
tex is added. When an arc of this new vertex is added, the new vertex will be
added to the subgraph of the other vertex of the new arc. This is done to ensure
that the new vertex is placed inside a subgraph where it will get probably a lot
of neighbours, so that the overlay graph stays smaller. To ensure queries to and
from a not already added vertex are still answered correctly, the algorithms all
check first if the source and target vertex are the same and returns true if that
is the case. If not, the algorithm checks whether both vertices are already in
the partition structure and if not returns false, since a not already added vertex
can’t have an arc, it can only be reachable from itself.
Alternatively the algorithms can also add new vertices to random subgraphs, to
ensure the partition keeps its balance.

When removing vertices, the algorithm has to remove the vertex from the over-
lay graph, if present there, and from its subgraph.

3.4.4 Space Requirements

The space requirement for these algorithms does depend on the size of the sub-
graphs and the overlay graph. Notice that for a higher k the subgraphs will be
smaller, since ns ≈ n

k and therefore the space requirements of the algorithms will
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Algorithm Query Time
Simple Partitioned O (|Bs| · qs + |Bt| · qt + |Bs| · |Bt| · qo)

Super Vertex O (|Bs| · qs + |Bt| · qt + q̃o + ão (|Bs|+ |Bt|) + r̃o (|Bs|+ |Bt|))
Bidirectional Super Vertex O (|Bs| · qs + |Bt| · qt + no +mo)

Overlay BFS O(|Bs| · qs + |Bt| · qt + |Bs| · (no +mo))
Reverse BFS O(ns +ms + nt +mt + |Bs| · (no +mo))

Fully Reverse BFS O(ns +ms + nt +mt + |Bs| · (no +mo))

Algorithm Update Time
Simple Partitioned O

(
|Bs|2 · (qs + uo) + us

)
Super Vertex O(|Bs|2 · (qs + k · ũo) + us)

Bidirectional Super Vertex O(|Bs|2 · qs + us)
Overlay BFS O(|Bs|2 · qs + us)
Reverse BFS O(|Bs| · (ns +ms))

Fully Reverse BFS O(|Bs| · (ns +ms))

Table 3: Worst-case times for the partitioned algorithms (Letters with tilde
refer to SS-Reach algorithms)

not be necessarily larger if there are more subgraphs. The space requirements
are of the order

S(n,m) = O

(∑
s

Ss (ns,ms) + So

(∑
s

|Bs| ,
∑
s

|Bs|2 +mo/r

))

where Ss refers to all algorithms and structures required for a subgraph and So

to all algorithms and structures required for the overlay graph.

4 Implementation

The algorithms are all implemented in C++ as classes and inherit from the class
DiGraphAlgorithm from Algora[1]. The DiGraphAlgorithm class of Algora is
implemented as an observer to a graph, so that algorithms can automatically
be notified if the graph changes. The graph implementation, the SS-Reach al-
gorithms and some other used data structures and algorithms are also from the
Algora library.

4.1 All-Pairs Reachability Algorithm based on SS-Reach
Algorithms

This algorithm uses the Algora[1] SS-Reach algorithms for queries, which also
all inherit from the DiGraphAlgorithm class and therefore use the observer func-
tionality, which automatically notifies the algorithms when their graph is up-
dated. The AP-Reach algorithm has one SS-Reach algorithm for each vertex of
the graph, which is used as the source in the SS-Reach algorithm. The pairs
of vertices and algorithms are saved in a FastPropertyMap, which has a worst
case lookup time of O(1). The SS-Reach algorithm that shall be used, can be
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specified by a template parameter.
If a query is made, the algorithm looks up the algorithm of the source vertex via
the map and then queries the found SS-Reach algorithm for the target vertex
and returns its result. Arc changes do not concern this algorithm, since the
same graph is also known by the SS-Reach algorithms, which are automatically
notified if their graph changes. New vertices will be added to the map with a
new algorithm and when a vertex is deleted its algorithm will also be removed
from the map.
The optimization mentioned in 3.2.4 is done by using template specialisation.
The specialization uses a single SS-Reach algorithm, for which the source is
changed to the queried source vertex for every query.

4.2 Partitioned All-Pairs Reachability Algorithms

The implementation of this algorithm uses a pointer to a function which can
partition a DiGraph from Algora. The function takes a DiGraph and returns a
FastPropertyMap which maps every vertex to an id, indicating to which sub-
graph the vertex belongs. This allows one to easily swap out the function used
to partition with another one, by setting the pointer to the new function.
When the algorithm is initialised, it first uses the function to get a partitioning
of its graph. It then proceeds to build a set of new digraphs, the subgraphs,
from the original digraph and the returned map. Each new digraph gets all
vertices belonging to the same id and the arcs that run between them. Then
the overlay graph is build, containing all the original edges that run between
vertices of different subgraphs including their tail and head vertices. Also all
subgraphs are mapped to the set of their border vertices so that they can be
quickly accessed. Then queries are done on all subgraphs to find connections
between border vertices, which, if they exist, are added to the overlay graph as
arcs.

4.3 Hierarchical Structure of the Algorithm Classes

The AP-Reach algorithms all inherit from a base class called DynamicAll-
PairsReachabilityAlgorithm, which offers queries from a source to a destination
and implements, together with its child classes, the composite pattern [9]. The
reason for this is, to make it easy to use multiple levels of partitioned algorithms,
so that one can use a partitioned graph, which is part of a larger graph, which
again could be a subgraph of an even larger graph and so on. Depending on
the partitioned algorithm, the pattern also allows one to use different AP-Reach
algorithms for the overlay and the subgraphs or to use completely new kinds of
AP-Reach algorithms, that are not currently implemented. A simplified class
diagram(UML) of the relevant classes can be seen in Figure 3.

19



Figure 3: A simple class diagram of the implemented composite pattern

4.4 Partitioning

The partitioning is done with the program KaHIP[21]. Since KaHIP can only
deal with undirected graphs, which have no more than one edge between two
vertices, the digraphs are converted to undirected ones with weights correspond-
ing to the amount of arcs running in any direction between two vertices, so that
KaHIP can respect the importance of certain connections.
KaHIP offers different preconfigurations that vary in their speed and quality.
The used preconfigurations are ecosocial (Balance between quality and speed),
fastsocial (Fast but with a worse quality) and strongsocial (Slow but with a
better quality).

5 Evaluation and Discussion

5.1 Testing Details

All experiments were run on a virtual machine with an Intel Xeon E5-2650 v4
and 504 GB of memory under Ubuntu 18.04.2 LTS. All tests were done on the
same single core. To ensure all algorithms get the same partition, the same
seed(877) was used for KaHIP. Different partition sizes all with k being a power
of 2 have been tested. Queries were generated with the InstanceProvider from
Algora[1] with the same seed(183788608).
Tables 4 and 5 show the abbreviations of the algorithms and their variables.
When SS-Reach subgraph algorithms were used, they are mentioned after the
colon. If additionally SS-Reach algorithms are used on the overlay graph, they
are written in the bracers after the subgraph algorithm. All results shown
have been achieved with the preconfiguration fastsocial since it showed the best
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Algorithm Abbreviation Colour Partitioned?
Single-Source based Algorithms Single-Source Name Blue no

Bidirectional BFS Bidi BFS Green no
Bidirectional Super Vertex Bidi SV Red yes

Fully Reverse BFS FRBFS Orange yes
Overlay BFS OBFS Purple yes

Simple Partitioned SP Cyan yes

Table 4: Algorithm abbreviations

Variable Abbreviation
Number of partitions k
Repartition threshold t

Random vertex additions r
Don’t query from already visited vertices on the overlay graph A

Step size for the bidirectional BFS s

Table 5: Algorithm variables

performance by far, especially when repartitioning was taken into account. The
stronger partitions did only work insignificantly better for queries and updates.

5.2 Instances

The algorithms were tested on three different sized graphs. The graphs were all
squashed to a density of 2, so that the partitioning works better. For each graph
update the algorithm also had to answer one query. We always used the same
timeout of 10 minutes. The instances include two graphs representing the links
between pages on Wikipedia of different languages from the site KONECT[14]
and the graph answers from [10]. The Wikipedia NL graph was only processed
to the year 2004 to reduce its size, so that the many different algorithm vari-
ables could be tested out. The answers instance of [10] was generated by them
using the SNAP software library [16] and estimated initiator matrices [15] which
corresponds to a real-world network. The graph was dynamized by generating
multiple snapshots of the graph and applying the changes in random order. A
table of the instances and their attributes can be seen in Table 6.

Graph n m N M n m d δ δ+ success
Answers Shuffled[10][16][15] 9.8k 21.8k 15.4k 21.8k 14.0k 21.8k 1.6 390k 50% 22.5%

Reduced Wikipedia NL[2][17] 6.8k 13.5k 64.4k 243k 41.0k 139k 3.2 319k 86% 11.3%
Wikipedia Simple[3][17] 6.8k 13.8k 100k 747k 62.6k 404k 6.1 1.6m 73% 40.6%

Table 6: The attributes of the three tested dynamic graphs. The lowercase
letters denote the sizes at the start and the uppercase letters the sizes at the
end. δ is the amount of operations, δ+ the portion of arc additions of the
operations and success the percentage of successful queries
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5.3 Results

5.3.1 Generalized Single Source Algorithms

We first compare the unpartitioned generalized SS-Reach algorithms, which can
be seen in Figure 4. The static, lazy and caching BFS/DFS algorithms were
the only algorithms able to finish under the timeout. The more sophisticated
SS-Reach algorithms(SI, ES, SES, MES) did have a timeout, which was a result
of their high update cost. The completely static algorithms did beat all the
dynamic versions of the algorithms, which is in line with the results of [13]
and [8] and shows that the best approaches to the SS-Reach problem cannot
be generalized so easily for the AP-Reach problem. Looking at the update
times in Figure 4b one can see that the update operations are very expensive
for even the most simple dynamized algorithms. This is probably due to the
large amount of SS-Reach algorithms that have to be notified for the dynamic
algorithms, while the static algorithms can completely ignore the updates. The
query times, which can be seen in Figure 4c, also favour the static algorithms.
This is interesting, since one would probably expect the algorithms which cache
reachability information to be faster. But this conundrum can be explained
when considering the probability that exactly one of the source vertices, that has
also cached the target vertex, is picked, which is quite low. The normal caching
algorithms therefore often have to search for the entire reachability information,
only to be soon invalidated by an update and probably never queried again at
this source vertex. The lazy algorithms have to cache each vertex encountered,
but are very unlikely to use the information before its invalidated by an update,
which explains why they are slightly slower than the static algorithms in the
query time.

5.3.2 Partitioned Algorithms

A comparison between the partitioned algorithms (Figure 5) shows that a bidi-
rectional approach on the overlay graph is clearly superior to all other ap-
proaches. The not bidirectional version of the Super Vertex and the RBFS
algorithms are not shown, since their bidirectional versions beat them by a very
large margin. Looking at the query times(Figure 5b), one can see that the vast
difference arises from the queries. There the Bidirectional Super Vertex and the
Fully Reverse BFS algorithm clearly show the best performance. The approach
to use dynamic algorithms on the overlay graph did not yield any good results.
This can partly be explained when considering how many updates have to be
done on the overlay graph. When a new arc is added to a subgraph, potentially
multiple new arcs have to be added to the overlay graph, which is problematic
for dynamic algorithms with a high update cost. Also for such high values of k,
as the here presented fastest algorithms, the overlay graph becomes quite large
and therefore the algorithms with SS-Reach algorithms on the overlay graph
will suffer from the same problems as the unpartitioned algorithms based on
SS-Reach algorithms. Comparing the two fastest partitioned algorithms, the
Bidirectional Super Vertex and the Fully Reverse BFS algorithm, shows that
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(a) Whole Time

(b) Average Arc Operation Times

(c) Average Query Times

Figure 4: A comparison of the unpartitioned generalised SS-Reach algorithms
on the answers graph
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(a) Whole Time

(b) Average Query Time

Figure 5: A comparison of the the fastest partitioned algorithms of each category
on the answers graph. (Algorithms: FRBFS(k = 4096/t = ∞/r = 0/s = 2);
Bidi SV(k = 4096/t = ∞/r = 0/s = 5): SI; OBFS(k = 1024/t = 20000/A =
1/r = 0): SI; SP(k = 8192/t =∞/r = 0): Static-DFS (Static-BFS)
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(a) Whole Time (b) Average Query Time

(c) Initialization Time with Partitioning (d) Average Update Time

Figure 6: A comparison of the the fastest algorithms of each category on the
answers graph. (Algorithms: Bidi BFS(s = 1), FRBFS(k = 4096/t = ∞/r =
0/s = 2), Bidi SV(k = 4096/t =∞/r = 0/s = 5): SI)

the approach of using generalized SS-Reach algorithms in the subgraphs also
doesn’t improve the results, which can be explained when considering the high
optimal k, as will be explained later in chapter 5.3.4.

5.3.3 The Best Algorithms

A comparison of the fastest algorithms from different approaches on the answers
graph can be seen in Figure 6. There it is clearly visible that the Static-BFS,
which showed to be among the best in [8] and [13], can easily be beaten with
some partitioned approaches, but the only slightly more complex approach of a
static bidirectional BFS can’t be beaten by even the best partitioned algorithms.
As can be seen in figure 6b, the query times of the Fully Reverse BFS are almost
on par with the static approach, but the time it takes to partition and maintain
the partition significantly slows down the algorithm as can be seen in Figure 6c.

Similar results can be seen for the Wikipedia graphs in Figure 7 and 8. The
optimal step size for the bidirectional BFS( indicated by the s parameter) seems
to vary with the graph size, which can partly be explained by taking into account
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(a) Whole Time (b) Average Query Time

(c) Initialization Time with Partitioning (d) Average Update Time

Figure 7: A comparison of the the fastest algorithms of each category on the
reduced Wikipedia NL graph. (Algorithms: Bidi BFS(s = 2), FRBFS(k =
32768/t =∞/r = 1/s = 4), Bidi SV(k = 16384/t =∞/r = 1/s = 3): SI)
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(a) Whole Time (b) Average Query Time

(c) Initialization Time with Partitioning (d) Average Update Time

Figure 8: A comparison of the the fastest algorithms of each category on
the Wikipedia Simple graph. (Algorithms: Bidi BFS(s = 5), FRBFS(k =
65536/t =∞/r = 1/s = 3), Bidi SV(k = 32768/t =∞/r = 1/s = 3): SI)
The Static-BFS did not finish under the timeout of 10 minutes.
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Figure 9: The relation between overall run-time and the amount of subgraphs
of the fastest algorithm(FRBFS(k = x/t = ∞/r = 0/s = 2)) on the answers
graph

that switching between the two searches also takes some time and for large
graphs the cost of doing to much steps is outweighed by the cost of switching
between the searches. Although the step parameter seems to be somewhat
random when looking at the partitioned algorithms. The differences in run-
time for step sizes close to the shown one were generally very small even when
taking the median of multiple measurements. So the strange step parameters
could just be a result of run-time fluctuations.
One can can also see that the larger the graph becomes, the higher the k gets,
but its always close to n. The Super Vertex algorithm generally preferred smaller
or at least equal values for k compared to the FRBFS algorithm, which can be
explained when considering that the Super Vertex has additionally 2 · k arcs in
the overlay graph, so a large k leads to an even larger overlay graph for the
super vertex algorithm compared to the overlay graph of the other partitioned
algorithms.

5.3.4 Problems with the partition

Finding the best k Surprisingly the best values for k were extremely high.
A figure showing the dependence of the overall run-time on the value of k can be
seen in Figure 9. A closer investigation of the partition reveals why that is the
case. First of all, the amount of border vertices per subgraph becomes smaller
with higher values for k, which is an important parameter for the worst-case
run-time of all the partitioned algorithms. A plot depicting the dependence of
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Figure 10: The relation between k and the vertices on the overlay graph for the
answers graph at the beginning

the border vertices on the amount of subgraphs can be seen in figure 10. A
second problem for low values of k is the high amount of overlay arcs due to
subgraph connections. As explained in the preliminaries, the upper bound for
these arcs does depend quadratically on the border vertices per subgraph and
therefore also on k. This means that for low k there are a large amount of
additional arcs that make the overlay-graph in terms of arcs even larger than
the original graph, but the subgraphs are also larger for low values of k. This
conundrum results in the partitioned algorithms having to have a high k, so that
their overlay-graphs keep a manageable amount of arcs. But then the algorithms
have to deal with a overlay graph that is almost as large as the original graph,
not only in its arc size but also in its vertex size, which diminishes the original
purpose of the partitioning to deal with smaller graphs. A plot depicting the
arcs due to subgraph connections, real overlay arcs and all the overlay arcs can
be seen in Figure 11.

Random Vertex Additions vs Smart Vertex Additions As can be seen
in Figure 12, the best approach to adding vertices to the partition does depend
on the graph. This is probably due to the effect that the answers graph does
not grow as much as the Wikipedia graphs. When comparing the growth of the
largest subgraph over time, the largest subgraph in the Wikipedia graphs grows
very fast and therefore becomes quite large which in turn leads to an unbalanced
partition and slows down the algorithm. With repartitioning this problem can
be somewhat mitigated but then the repartitioning becomes an expensive factor
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Figure 11: The relation between k and the amount of arcs in the overlay graph
at the beginning

Figure 12: The fastest algorithms with random vertex additions vs the fastest
algorithms with a ”smart” vertex addition on all three graphs. The algorithms
using the ”smart” repartition on the Wikipedia graphs all required repartition-
ing to finish under the timeout
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Figure 13: The relation between overall run-time and the repartition threshold
of the fastest algorithm(FRBFS(k=4096/t=x/r=0/S=2)) on the answers graph

in the overall run-time of the algorithm.

Repartitioning Repartitioning the graph after a certain amount of opera-
tions did only show performance improvements when using non-random vertex
additions on the Wikipedia graphs, as just explained it mainly improved the
balance of the partition. On the answers graph repartitioning resulted in a
worse run-time as can be seen in Figure 13, because the additional partition
time could not be mitigated by faster operation and query times.

Advanced Overlay BFS The option to not do a BFS from source border
vertices already visited by another overlay BFS during the same query did show
to improve the results a lot. A comparison can be seen in Figure 14. The
difference becomes less with a higher k, which makes sense, since the average
border vertices of a subgraph also decrease with a higher k, which means the
performance improvement can’t be as large.

Subgraph Algorithms The only tested competitive algorithm that uses SS-
Reach algorithms is the Bidirectional Super Vertex algorithm. As can be seen
in Figure 15, the choice of the SS-Reach algorithm does not really matter. The
differences are so low that with some fluctuations in run-time one can not really
say which algorithm is the best. This is a result of the optimal k being so
large, which means the subgraphs are extremely small and therefore updates
and query costs are nearly the same. That also explains why algorithms that
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Figure 14: A comparison of the average query time of the algorithm OBFS(k =
x/t = 20000/A =?/r = 0) when doing queries from already visited vertices on
the overlay graph versus not doing queries from already visited vertices.

Figure 15: A comparison between different subgraph algorithms on the answers
graph with the partitioned algorithm Bidi SV(k = 4096/t =∞/r = 0/s = 5)
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use static searches on the subgraphs like the FRBFS are faster, since they don’t
have the overhead of administering subgraph algorithms and picking the right
algorithms for queries.

5.4 Memory Requirements

Some of the SS-Reach based algorithms could not be tested on the Wikipedia NL
and Wikipedia Simple graph, because they required to much memory. But we
expect these algorithms to perform very poorly because of their large memory
requirements and their results on the smaller answers graph.
The partitioned algorithms generally did not require much more space than the
static algorithms, which is probably a result of the high k and the therefore small
subgraphs, which meant that even the highly memory demanding algorithms
didn’t use much space.

6 Conclusions and Future Work

The approach of using partitioning and or SS-Reach algorithms for a faster
AP-Reach algorithm was not successful. Simple minded static algorithms still
were the best algorithms compared to the partitioned algorithms tested. These
algorithms have a large amount of variables that can be tuned, which makes
finding the best algorithms hard and somewhat impractical. One has to tune
the variables depending on the graph. Many of the variables also have a depen-
dence on each other which makes finding the optimal values for the variables
even harder. For example, the optimal repartition threshold t and the amount
of subgraphs k have an obvious dependence on each other. A lower k means
faster partition times, which means more repartitions can be done.
All the tuning for the algorithms could not improve their query-times signifi-
cantly over the best static algorithms such that their additional time of partition-
ing and maintaining the partition could be mitigated. The fastest partitioned
algorithms were not even able to beat the static algorithms in their query time
which is probably a result of two factors. First, the overhead of doing not just
a query on the overlay graph, but also queries on the subgraphs. Second, the
partitioning does not seem to work well for this reachability scenario, since a
lot of additional overlay arcs have to be added for correct overlay queries, which
slows down the queries on the overlay graph.
We therefore cannot recommend using partitioned and/or single-source algo-
rithms for the all-pairs reachability problem. Instead a simple bidirectional BFS
should be used, which is much easier to implement, has only one parameter to
tune, does not use much memory and has showed to have the best performance
by far compared to all our other implemented algorithms.
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But there is much additional work that could be done to improve the parti-
tioned algorithms. The easiest performance gains could probably be achieved
by parallelizing the partitioned algorithms. Since there are so many sub-queries
to be done for operations and general queries, one could easily just split the
many queries in subgraphs among multiple threads. For example checking for
new subgraph connections that have to be added to the overlay graph, could be
done by executing searches from each border in parallel.
On the algorithm side one could significantly improve the arc add and remove
times by using SS-Reach algorithms that can notify the main algorithm if their
reachability information changed. Because if such SS-Reach algorithms would
be used, the main algorithm would not have to do |Bs|2 queries for every border
vertex when a subgraph change is done. Then one could just update the over-
lay graph by adding/removing the arcs to the vertices of which the SS-Reach
algorithms did just report that they now can/can’t reach.
It would also be interesting to test other AP-Reach algorithms on on the par-
titioned graphs than generalized SS-Reach algorithms. Some of the algorithms
in [8] and [13] could perhaps work better as subgraph algorithms where answer-
ing queries in constant time becomes more important. One could also try to
use multi-source/-target reachability algorithms instead of AP-/SS-Reach algo-
rithms, which would yield the advantage of not having to do so many subqueries.
Other future work could include more tuning on the partition side. Balancing
the amount of edges in the subgraphs could for example yield some performance
improvements. One could also partition the graph with the objective of mini-
mizing the border vertices instead of the arcs between them, since it seems from
the results that the border vertices are the major factor in the run-time. But the
partitions would probably be similar to the current partitions, since the amount
of overlay arcs and the amount of border vertices are dependent on each other.
The method of adding vertices could also be improved by introducing limits to
how large a subgraph is allowed to get, before a vertex is added to a random
subgraph, instead of adding it to the subgraph of its neighbour.

In summary there is much work that can be done to potentially improve the al-
gorithms, but it remains questionable if they could beat the static bidirectional
search, since all our attempts and the attempts of [8] and [13] failed to clearly
beat simple static algorithms with complex ones.
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