
Bachelorarbeit

Update Your Network - Loop Free

Verfasserin oder Verfasser

Tabea Reichmann

angestrebter akademischer Grad

Bachelor of Science (BSc)

Wien, 2021

Studienkennzahl lt. Studienblatt: UA 521

Fachrichtung: Informatik - Scientific Computing

Betreuerin / Betreuer: Dr. Kathrin Hanauer, MSc, BSc
Dr. Dr. Dipl.-Math. Dipl.-Inform. Klaus-Tycho
Förster

Contents

1 Motivation 4

2 Preliminaries 5
2.1 Definitions and Terminology . 5
2.2 Equivalent and Related Problems to the FASP 6
2.3 Topology of the Networks . 6

3 Related Work 8
3.1 Feedback Arc Set Problem . 8
3.2 Software Defined Networking and Network Updates 9

4 Algorithms 10
4.1 Variation of the Eades-Lin-Smyth-Algorithm 10
4.2 1-Opt . 12
4.3 Greedy Approach . 14

5 Performance of the Algorithms 16
5.1 Worst Case Bounds . 16
5.2 Advantages and Disadvantages of the Algorithms 18

5.2.1 Greedy Approach . 18
5.2.2 Eades-Lin-Smyth . 18
5.2.3 1-Opt . 20

6 Implementation 22
6.1 Algorithms . 22
6.2 Construction of the Topologies 22
6.3 Controller . 23

7 Evaluation and Discussion 24
7.1 Topologies . 24

7.1.1 Shortest Path Trees . 24
7.1.2 Random Paths . 25

7.2 Results . 26
7.2.1 Shortest Path Trees . 26
7.2.2 Random Paths . 31
7.2.3 Summary . 38

8 Conclusions and Future Work 39

2

Abstract

In Software Defined Networking, updating forwarding rules should be
done as efficiently as possible - many rules should be updated in a short
amount of time. The resulting rules must not have a cycle, as packets
should be able to reach their destination and not get dropped. Due to
these limitations, a heuristic approach is needed, as updating loop-free
optimally, using the fewest rounds, is an NP-complete problem. As the
most updates should be made in each round, and the number of rounds
should be reduced, therefore only few rules should not be added, this is
an application of the Feedback Arc Set Problem. This thesis compares
algorithms and combinations of those algorithms based on heuristics that
approximate solutions to the Feedback Arc Set Problem to find out how
current techniques can be improved.

3

1 Motivation

With the rise of Software Defined Networking, flexibility in routing can be
achieved. This is valuable, as, due to maintenance or link and node failures,
new rules sometimes need to be computed. As a Software Defined Network is
a distributed system, there are other challenges regarding the updating proce-
dure. Delays in the communication between switches and the controller can
make it inconsistent when updating all nodes at once. Solutions to this problem
have been studied before, an example are the usage of version tags, see [23], or
only updating a certain subset of nodes, so loop-freedom can be maintained, see
[7, 9, 20]. The latter approach is also studied in this thesis.
While a node is not updated, its outgoing old arc cannot be removed, so packets
can still be routed to the destination, without them being dropped. As loop-
freedom needs to be preserved, there are limits to which rules can be added per
round. The goal is to minimize the number of rounds needed for the updates,
while maximizing the updates that are possible per round. That an optimal
3-round update schedule is NP-hard has been shown in [7].
The state-of-the-art algorithm is a greedy approach, in which the computed new
rules are tried to be added to the old rules. The problem is an application of the
Feedback Arc Set Problem, which is another NP-complete problem in general,
except for a few special graphs. Therefore, there exist a number of approxima-
tion algorithms that can be adapted to fit the context of network updates, e.g.
the Eades-Lin-Smyth algorithm [5], or the 1-Opt algorithm [13].

This thesis adapts the aforementioned Eades-Lin-Smyth and 1-Opt algorithm
and compares these with the state-of-the-art greedy approach, as well as adapt-
ing the greedy approach, which uses a random insertion order, by sorting the
arcs by the indegree of their tails. Further, the 1-Opt algorithm and the greedy
algorithm are used as post processing techniques of the Eades-Lin-Smyth algo-
rithm. The aim is to improve the current techniques and to find out advantages
and disadvantages of the different algorithms.

4

2 Preliminaries

2.1 Definitions and Terminology

In this section, the terminology further used in the thesis is covered. When
using standard terminology, the definitions from [10, 16, 21, 25] are used.
First to some definitions in the field of graph theory, that are important over
the course of the thesis:
A graph is defined as G = (V,A), with V denoting the vertices (or nodes) and A
the arcs (or edges) of the graph. A digraph D = (V,A) is a graph with directed
arcs. In a directed graph, an arc is written as a = (v1, v2), where the node v1 is
called the tail and v2 the head of the arc a. The arc a is an incoming arc into
v2 and an outgoing arc from v1.

In a directed graph D = (V,A), the indegree of v is the number of incom-
ing arcs into a vertex v, and is denoted by d−(v). The outdegree is the number
of outgoing arcs from a vertex v and is written as d+(v).

Planar graphs are graphs that can be drawn in a plane without its edges crossing.

A linear ordering of the nodes V in a graph is linear sequence, ranking the
nodes. It also can be seen as a permutation of the vertices. If the vertex v1 is
ranked before v2, we write v1 ≺ v2. The linear ordering is denoted as σ, and
σ(i) defines the position of the node i in the linear ordering.

A forward arc is an arc, with its tail having a lower position in the linear
ordering than its head. A back arc is an arc, with its head having a lower
position in the linear ordering than its tail.

Further, also the Feedback Arc Set Problem (further also written as FASP)
has to be defined. There exists a definition as an optimization problem, and
a definition for the decision problem. First to the definition of the optimiza-
tion problem:
The Feedback Arc Set Problem is defined for a directed graph D = (V,A), where
the aim is to find an arc set B of minimum cardinality, so that the resulting
graph D̂ = (V,A\B) is acyclic. It can also be defined for a weighted graph, in
which the subset B is of minimum weight. [21]
The Feedback Arc Set Problem can also be defined as a decision problem: For
an for a directed graph D = (V,A) and a positive integer K ≤ |A| is there a
subset B ⊆ A with the property |B| ≤ K such that B contains at least one edge
from every directed cycle of D?

Next, Software Defined Networking (SDN) has to be defined. It is an alternate
approach to implementing routing functionality in networks to the traditional
approach, where each routing component runs a routing algorithm and there-
fore forwarding and routing is done within the router. SDN physically separates

5

routers and the controlling functionality which computes and distributes the for-
warding tables to each router in the network.

When now an update has to be made, e.g. due to maintenance work, or link /
node failures, a new set of rules gets computed by the routing algorithm. During
the updates, the network has to stay consistent. Therefore, there should not be
any loops when adding the new rules to the set of old rules, as a simultaneous
update cannot be guaranteed and otherwise there can be inconsistencies. While
Strong Loop-Freedom means that forwarding rules stored in the switches must
always be loop-free, Relaxed Loop-Freedom means that only the rules in switches
along the path from the source to the destination have to be loop-free. [7]
This thesis focuses on strong loop-freedom, therefore this definition is used when
talking of loop-freedom.

2.2 Equivalent and Related Problems to the FASP

There exist several equivalent or related problems to the Feedback Arc Set
Problem. One equivalent problem is the Acyclic Subdigraph Problem (ASP).
The optimization problem is defined as follows:
For a digraph D = (V,A) find a subset B ⊆ A, which contains no cycles and
has maximum cardinality, or, in case of a weighted digraph, maximum weight.
The optimal solution is trivially equivalent to the Feedback Arc Set Problem.
A related problem to the Feedback Arc Set Problem is the Feedback Node Set
Problem or Feedback Vertex Set Problem (FNSP). Again, the definition of the
optimization problem is to find a subset W ⊆ V with minimum cardinality or
weight of the nodes or arcs, such that (V \W,A(V \W)), with A(V \W) denoting
all arcs that do not include vertices from W but only from V , does not contain
a cycle.
As a decision problem, the Feedback Vertex Set Problem can defined as follows:
For a digraph D = (V,A) and an integer K ≤ |V |, is there a subset W ⊆ V
with the property |W | ≤ K, such that W contains at least one vertex from each
directed cycle in D?

Both the FASP and FNSP are NP-complete problems and can be reduced from
the vertex cover [14]. The FASP also remains NP-complete for graphs with
nodes with a total in- and outdegree of 3 [11].
While the FNSP remains NP-complete also for planar graphs, the FASP is then
optimally solvable in polynomial time [17]. Further, the FASP is also solvable
in polynomial time for reducible flow graphs, as their arcs can be uniquely split
into forward and back arcs [22].

2.3 Topology of the Networks

The network topologies, which were constructed to evaluate the algorithms,
share a specific characteristic: All nodes have exactly one outgoing arc, except
for the destination node, which only has incoming arcs. The initial rules will

6

further be called old rules and the resulting digraph denoted as G1 = (V,A1).
A network update may now happen due to e.g. maintenance work, and link
/ node failures, why a new topology is constructed, having the same proper-
ties. The rules, to which the network should now be updated will be called new
rules and the resulting digraph denoted as G2 = (V,A2). Both resulting graphs
are trees.
The goal is now to as efficiently and fast as possible update the network, but,
as loop-freedom has to be preserved, only a certain subset of A∗2 ⊆ A2 can be
added to the set A1, so that the graph G∗ = (V,A1 ∪ A∗2) remains acyclic and
therefore inconsistencies can be avoided.
In the next step, the nodes vi can be updated, of which the outgoing arcs are
(vi, ji) ∈ A∗2. The old outgoing arcs can then be deleted.
This process is iterated until all nodes are updated, therefore the resulting graph
G′ is equal to the graph G′ = G2 = (V,A2).
In order for this problem to be as efficiently done as possible, the fewest possible
arcs should be in the set A2\A∗2, therefore being an application of the Feedback
Arc Set Problem. Further, the number of iterations, called rounds, should be
reduced.
To compute the feedback arc set, the graph G = (V,A1 ∪ A2) is constructed,
that therefore is constructed of two trees put on top of each other.

Even for networks with the old rules and new rules just being simple paths
from one source to one destination node, the problem of minimizing the num-
ber of nodes, that are not updated in the first round, has been proven to be
NP-hard, see [2], where the authors use a reduction from the Minimum Hitting
Set Problem, and [8], for networks with a single or multiple destinations. For
this proof a reduction from the Feedback Arc Set Problem is used.
In [7] it has been shown that this problem is NP-complete for 3-round updates
for two simple paths as old and new rules, by reducing the problem to selecting
edge subsets and modifying the 3-SAT problem to an edge selection problem.
The authors first classify the nodes into categories, when the nodes can be up-
dated. While for some of the nodes it is clear when to update them, for one
type the updates can be done in the first or the third round, and finding this
distribution is NP-hard.

7

3 Related Work

The following sections outlines several algorithms used for approximating a min-
imum feedback arc set, as well as discusses work on network updates in Software
Defined Networking.

3.1 Feedback Arc Set Problem

There are several algorithms that approximate a minimum feedback arc set,
and one of the most popular ones is the Eades-Lin-Smyth algorithm [5]. The
algorithm was published in 1993, and its goal is to find a linear ordering that
has a small set of back arcs. To achieve this, the algorithm identifies sinks
and sources of the graphs, then removes them from the graph, then identifying
resulting sinks and sources. When no more sinks and sources can be found,
the algorithm finds nodes with the highest δ = d+ − d−, treating them as a
sources. This procedure then moves the found sources to the front of the linear
ordering, the sinks to the back. The paper states a running time of O(m), with
m denoting the number of arcs.

Another algorithm that computes a linear ordering of the nodes, with its back
arcs then being the feedback arc set, is the 1-Opt algorithm, that, starting out
from a linear ordering σ, goes through each node and tries to optimize the po-
sition of each node, setting the node to the position with the smallest number
of back arcs b = b− + b+.

Furthermore, many publications describe the problem in a tournament con-
text, see [1], [4] and [12]. A tournament T in A is defined as a subset of arcs
that for each pair of nodes i, j in V contains either the arc (i, j) or (j, i).
One of the most prominent algorithms is the KwikSort algorithm [1], that adapts
the idea of the QuickSort algorithm for sorting numbers. The KwikSort algo-
rithm uses a divide and conquer strategy, starting out with a random vertex
i ∈ V . The algorithm goes through each vertex j of the other vertices, and, if
(j, i) is in the set of arcs, the vertex j is added to the left partition of V , denoted
as VL. If (i, j) ∈ A, j is added to the right partition of VR. The linear ordering
then is returned as σ = (KwikSort(VL), i,KwikSort(VR)), recursively calling
the routine on each of the partitions.
While in [4] kernelization is used in the algorithm, [12] gives, inter alia, algo-
rithms based on randomization for bipartite tournaments, using the properties
of this graph structure.
Kudelić et al. also make use of randomization in their publication [15], devel-
oping an ant colony inspired Monte Carlo algorithm.

Another algorithm that is often used for the approximation of the minimum
feedback arc set, is the Berger-Shor algorithm [3], which was developed to find
the maximum acyclic subgraph. Comparing the in- and outdegree of each ver-
tex, either the incoming arcs or the outgoing arcs are added to the subgraph.

8

There are two versions of this algorithm, a randomized one, and one, in which
the order of vertices is chosen to get an as high as possible expected value of
the subgraph size.
There is also a special case of the feedback arc set, namely the Subset Feedback
Edge Set, for which only certain cycles are needed to be intersected [6].

3.2 Software Defined Networking and Network Updates

With the rise of Software Defined Networking the flexibility of routing has in-
creased. However, as Software Defined Networks can be seen as distributed
systems, the updating process can still be a challenge, as delays between the
controller and the switches make the communication to take longer and in-
consistencies can arise. Several approaches for updating can be found in the
literature, e.g. the usage of version tags, or updating only a set of nodes, for
which loop-freedom can be preserved.
The model, using version tags is described in [23] by Reitblatt et al. In the
first step all new rules are communicated to the nodes, making it possible that
only some packets, that have a certain tag saying it belongs to the new route,
are forwarded along the new route. Other packets are forwarded along the old
rules. When all nodes communicate that the updating process has been done,
all packets get tagged as well, forcing the packets to get forwarded according to
the new rules. One disadvantage is, that all nodes have to be updated before
the new rules can properly be used.
Another approach is only updating a certain subset of nodes, for which it is
known, that loop-freedom can be maintained. In [20] Mahajan and Watten-
hofer describe the nodes that can be updated using the structure of a depen-
dency forest, where the destination is the root node. Children must wait with
their update until their parents switched from the old rules to the new rules,
therefore tagging is not needed. The authors also discuss an algorithm, that
greedily tries to update as many nodes as possible.
This model is also discussed in [9], where the algorithm is outlined.
In [7], also relaxed loop-freedom is studied, where only the rules in switches
along the path from the source to the destination have to be loop-free. This
approach is used, as loops cannot provide inconsistencies when they are not
between the source and destination. This has advantages over strong loop-
freedom, as a schedule for O(logn)-round always exists [18], making it compu-
tationally tractable.
Further, the authors conclude that the greedy approach in some cases can have
a bad performance when it comes to the number of rounds needed for the updat-
ing process. While there are solutions with O(1) rounds, the greedy approach
can take Ω(|V |) rounds.
There is also literature on route updates, that are not destination based, see
[19], but describe an arbitrary route. In the paper it is also studied, how Way-
point Enforcement can be maintained, in which the packet has to traverse a
checkpoint.

9

4 Algorithms

In this section, a closer look is taken at heuristics, that provide good results
for the general Feedback Arc Set Problem, and are adapted to the problem of
network updates. When adapting the algorithms, it has to be taken into ac-
count that there is a set of fixed rules, that cannot be part of the feedback arc
set. Starting out from a set of old rules, and a set of new rules, rules from the
set of old rules are deleted, while rules from the set of new rules are added in
each round. These are then deleted from the set of new rules, while the arcs,
outgoing from an already updated node, are then removed from the old and
fixed rules. The set of fixed rules in each round is further also called current
rules. The feedback arcs can only be part of the the set of new rules, but never
the set of current rules.
The data structure of the graph used in the implementation is in an adja-
cency list representation1, therefore look ups and deletions can be done in con-
stant time.
This chapter further examines the algorithms used in the thesis. The time
complexity analysis uses the properties of the adjacency list representation.

4.1 Variation of the Eades-Lin-Smyth-Algorithm

For this thesis, a variation of the Eades-Lin-Smyth-Algorithm was used. It takes
the ideas of the original algorithm and makes adaptations to fit the topic of net-
work updates, as there is a fixed set of rules that cannot be deleted, therefore
cannot be part of the resulting feedback arc set.
The original algorithm first identifies sinks in the graph, then removes the found
ones from the graph and places them in the back of the linear ordering. This
can result in creating new sinks, which then will be removed and placed in the
linear ordering as well.
The next step is to find sources, place them in the front of the linear ordering,
remove them from the graph, which again can result in creating new sources.
When no more sinks and sources can be found, the algorithm goes through
all nodes that are still in the graph and chooses the node with the highest
δ = d+−d−, place them in the linear ordering after the sources and remove the
node from the graph. Then, the algorithm begins with finding sinks and sources
again, iterating until the graph is empty. The following pseudo code outlines
the steps of the algorithm:

procedure ELS(digraph D = (V,A)) [5]
s1, s2 = list(), list()
while D 6= ∅ do

while sink in D do
prepend sink to s2
remove sink from D

1https://networkx.org/documentation/stable/reference/introduction.html

10

https://networkx.org/documentation/stable/reference/introduction.html

end while
while source in D do

append source to s1
remove source from D

end while
find node with maximum δ = d+ − d−
append node to s1
remove node from D

end while
append s2 to s1

end procedure

The ELS algorithm can make use of a special data structure to be able to find
sinks, sources and nodes with the highest δ = d+ − d− efficiently. It uses a
structure of bins to save the nodes according to their δ (from −(n− 3) to n− 3,
with n denoting the number of nodes), and in the case of an in- or outdegree of
0, a special bin for sinks or sources. The δ of the bin with the highest available
δ gets saved. If this bin now is empty, this value is decremented, until a non-
empty bin is found. If an arc is deleted, the value can be maximally incremented
by 1. Therefore, the value can only be incremented m (denoting the number
of arcs) times and decremented (2(n− 3) +m) times over the whole algorithm,
making the look ups for the nodes possible in O(m), and therefore the algorithm
possible in linear time.
To adapt the algorithm to fit the problem of network updates, an additional
step has to be added - a look up for nodes without incoming fixed arcs.
While the original algorithm can add any arc to the feedback arc set, the adap-
tation cannot. Therefore, when arranging the linear ordering, nodes without
incoming fixed arcs can be appended to the list of sources, as no cycle can
then occur.
The following pseudo code outlines the process of the algorithm:

procedure ELS(old rules, new rules)
both rules ← old rules ∪ new rules
current rules ← old rules
s1← ∅, s2← ∅
while not all nodes updated do

while both rules 6= ∅ do
while sinks in both rules do

prepend sink to s2
remove sink from both rules

end while
while sources in both rules do

append sink to s1
remove source from both rules

end while

11

find node with maximum δ = d+ − d− and no incoming fixed arcs
add node to s1
remove node from both rules

end while
append s2 to s1
current rules ← update nodes according to linear order

end while
end procedure

Each round of the Eades-Lin-Smyth-Algorithm can be done in O(|V |).

Lemma 4.1. The time complexity of the ELS algorithm, adapted for the prob-
lem of network updates, is O(|V |) per round.

Proof. Let D = (V,A1,2) be the graph to represent the constructed digraph that
includes both the set of new rules and the set of old rules A1,2 = A1 ∪ A2. We
know that m := |A1| = |A2|, and n := |V |.
Building a similar data structure as described in [5] and saving sinks, sources and
nodes without incoming fixed arcs according to their δ, takes O(n) time. A look
up for sinks and sources can be done in constant time. The maximum δ can be
saved to a value x. Some of the nodes only get eligible as other nodes are deleted,
while in the original algorithm all nodes can be used. This problem can be
solved by e.g. having the bin point to two different lists of nodes, one with fixed
incoming, and one without fixed incoming arcs. Only when the fixed arcs are
removed from the graph, the node can be transferred to the other list. Therefore,
finding the node with the highest delta can lead to a jump (by incrementing the
value x) from one bin to another. The maximum distance for this is d−(v)+2, as
the maximum δ a node can have (without it being a source) using the topology
of the graphs used for this thesis, is 1, and the minimum δ for each vertex is
1−d−(v) (without it being a sink). Afterwards, the maximum distance that can
be needed to go to a resulting node without an incoming fixed arc is d−(v) + 2
again. Over the whole algorithm this means that the value x needs to be de-
and incremented at most

∑
v 2(d−(v) + 2) =

∑
v 2d−(v) + 4 = 2m + 4n times,

as the sum of indegrees is the number of arcs. As, due to the network topologies,
m = n− 1, the resulting time complexity is O(n) = O(|V |) per round.

4.2 1-Opt

The original 1-Opt algorithm tries to optimize the position of each node by
calculating the amount of back arcs b = b+ + b−, with b− denoting the number
of incoming back arcs and b+ the number of outgoing back arcs.
The procedure of the original algorithm is outlined in the following pseudo code:

procedure OneOpt(digraph D = (V,A), linear ordering σ) [13]
for v ∈ V do

b0 = b+(v) + b−(v) according to current position

12

find position p that minimizes b
bn = b+(v) + b−(v) according to p
if bn < b0 then

move v to position p
end if

end for
end procedure

This approach is extended to fit the problem of network updates by only looking
at positions that are valid for each node, meaning the positions are bounded
by their incoming and outgoing fixed arcs and the positions of their heads and
tails in the topologically sorted list of nodes, or, if used as post processing, the
resulting linear ordering of the post processed algorithm.
The following pseudo code outlines the process of the algorithm:

procedure OneOpt(old rules, new rules)
current rules ← old rules
while not all nodes updated do

top sort(current rules)
for node in current rules in top sort order do

Find valid positions for the node
for position i in valid positions do

calculate bi = b+i + b−i
end for
Move node to position i with the smallest bi

end for
current rules ← update according to linear order

end while
end procedure

For showing the time complexity of the 1-Opt algorithm, we need the follow-
ing lemma:

Lemma 4.2. [24] The time complexity of topological sorting a digraph D =
(V,A) is O(|V |+ |A|).

We show the time complexity for the 1-Opt algorithm.

Lemma 4.3. The time complexity for each round of the adapted 1-Opt algo-
rithm is O(|V |).

Proof. Let D = (V,A1,2) be the graph to represent the constructed digraph that
includes both the set of new rules and the set of old rules A1,2 = A1 ∪ A2. We
know that m := |A1| = |A2|, and n := |V |. Topologically sorting the nodes (only
taking the old rules into account) takes O(n + m) time. Finding the optimal
position for each node v takes O(d(v)) time. As is is known that

∑
d(v) = 2|A|,

finding the optimal position for each node is done in O(m). Therefore each

13

round of the algorithm takes O(n + m + m) time, which can be simplified to
O(n + m). As, due to the network topologies, m = n − 1, the resulting time
complexity is O(n) = O(|V |) per round.

The 1-Opt algorithm can further optimize the linear ordering resulting from the
ELS algorithm. The idea of the algorithm stays the same, only that the initial
ordering is not computed by the topological sort algorithm, but the ELS algo-
rithm.

4.3 Greedy Approach

The greedy approach simply goes through all arcs in the set of new rules and
tries to insert the arc if acyclicity can be guaranteed. For checking for acyclic-
ity again the topological sort algorithm can be used, as if it fails, the graph
is cyclic. [24]
The following pseudo code outlines the process of the algorithm:

procedure Greedy(old rules, new rules)
current rules ← old rules
nodes to update ← ∅
while not all nodes updated do

for rule in new rules do
if current rules ∪ rule is acyclic then

current rules ← current rules ∪ rule
add tail of rule to nodes to update
remove rule from new rules

end if
end for
update nodes in nodes to update

end while
end procedure

We show the time complexity for the greedy algorithm.

Lemma 4.4. The time complexity for each round of the greedy algorithm is
O(|V |2).

Proof. Let D = (V,A1,2) be the graph to represent the constructed digraph
that includes both the set of new rules and the set of old rules A1,2 = A1 ∪A2.
We know that m := |A1| = |A2|, and n := |V |. Going through each arc in the
set of new rules takes O(m). For each arc the topological sorting algorithm is
called which leads to a time complexity of O(n+m) for each arc. This results
in a time complexity of O(n + m2). As, due to the network topologies, m =
n− 1, the resulting time complexity is simplified to O(m2) = O(n2) = O(|V |2)
per round.

In some cases, see Section 7, the greedy algorithm performs better, when the
insertion order is not random, but sorted by the indegree of the tails. This

14

version of the greedy approach will be further called the sorted greedy algorithm.
For this, the outgoing arcs from nodes with a higher indegree are inserted first.
The idea behind this is, that in the round after, it is possible for more nodes to
update, as the possibility of a cycle outgoing from this node is eliminated.
An example is shown in Figure 1. The nodes 3, 4, 5 and 6 can only be updated,
once the node 1 is updated. The node 1 can only update, when the node 2
is not updated in the same round, therefore, when choosing the node 2 to be
updated first, the node 1 can only update in the next round and the nodes 3, 4,
5 and 6 in the round after. This takes 3 rounds. When first updating the node
1 though, the node with the highest indegree, the nodes 2, 3, 4, 5 and 6 can all
be updated in the next round, leading to 2 rounds in total. The node 8 can be
either way updated in the first round, the node 7 does not need to be updated,
as the outgoing arc stays the same.

Figure 1: Scenario, where the sorted greedy algorithm can perform better

The greedy algorithm can further be used as a post processing method by greed-
ily trying to add resulting back arcs, while maintaining acyclicity with both the
forward arcs and set of fixed rules.

15

5 Performance of the Algorithms

This chapter examines advantages and disadvantages of the algorithms and
compares them to each other for some special cases. The first section further
analyses the number of rounds that are needed in the worst case.

5.1 Worst Case Bounds

The number of rounds for each of the algorithms can be trivially bounded by
the number of rules to update, for the case in which only one arc per round can
be updated. This is the case, if the graphs containing the old rules A1 and new
rules A2 have the property that each arc (i, j) of the old rules is (j, i) in the set
of new rules, except for the arc leading to the destination node. A visualisation
of this special case can be seen in Figure 2.

Figure 2: Special case, where all arcs are reverse (except for the one leading to
the destination node

As can be trivially seen, in the first round the arc (1, D) can be added to the set
of old rules while preserving acyclicity. Therefore, the node 1 can be updated,
leading to the deletion of the arc (1, 2) from the set of old rules, as can be seen
in Figure 3.

Figure 3: Scenario after the first update

Now it is possible to add the arc (2, 1) while maintaining acyclicity. Therefore,
node 2 can be updated. The update of node 2 further results in a deletion of
the arc (2, 3), which then leads to the possibility of updating node 3, then the
node 4 and finally the node 5, visualized in Figure 4. So in each round, there
is only one node that can be updated, resulting in a bound of a maximum of
|A1| = |A2| rounds, in which each of the algorithms terminates.
While the greedy approach here tries to add each edge to the set of fixed rules
and checks for acyclicity, the ELS algorithm in each round identifies the destina-
tion node and recursively, when deleting all incoming arcs into the destination

16

(a) After round 2

(b) After round 3

(c) After round 4

(d) Final result after round 5

Figure 4: Scenario after rounds 2 - 5

node, further resulting sinks. Sources and nodes without incoming fixed rules
cannot be found. The 1-Opt algorithm moves, in each round, each node forward
right before the node that is the head of the outgoing fixed rule. As more than
just one update per round is not possible while maintaining acyclicity, each of
the algorithms performs the same in terms of the number of rounds needed.
Another worst case, only for the 1-Opt algorithm, is discussed in Section 5.2.3,
as the 1-Opt algorithm can have circumstances, where the algorithm does not
terminate at all.

17

5.2 Advantages and Disadvantages of the Algorithms

In this section cases are observed, where some of the algorithms show their
weaknesses, while others perform well. This makes the disadvantages and ad-
vantages clear, that the different heuristics have. For each of the algorithms,
one case is shown, where it explicitly encounters a problem that can be more
efficiently solved by the other algorithms.

5.2.1 Greedy Approach

The greedy approach in general randomly tries to add arcs from the set of new
rules to the set of fixed rules. Therefore, some cases can be found in which
the order of the insertion process can make a difference when it comes to the
amount of nodes that can be updated in one round.
When looking at the situation in Figure 5a (example taken from [9]), the or-
der of iterating through the arcs and trying to insert them to the set of fixed
rules can make a huge difference. E.g. when trying to first add the arc (2, 3),
only one other arc can be added to ensure acyclicity, see Figure 5b. But, when
trying to first add e.g. the arc (3, 4), all except for the arc (2, 3) can be added
without constructing a cycle, see Figure 5c. This results in different outputs
depending on the order of the insertion process. The sorted greedy algorithm
does not perform better in this case, as, except for node 1, all other nodes have
the same indegree.
This instability is not observed for the Eades-Lin-Smyth algorithm. Identify-
ing the destination node as sink and then further identifying the node 1 as
a node without incoming fixed arcs due to the deletion of the arcs (1, D),
(7, D) and (2, D) from the union of the fixed and new rules, then further
identifying the node 7 as a sink, etc., always leads to the linear ordering of
σ = (1, 2, 3, 4, 5, 6, 7, D) leading to the same scenario as the worst case perfor-
mance of the greedy approach as seen in 5b. This can be improved by using the
post processing method of applying the 1-Opt algorithm of the resulting linear
ordering σ resulting in the linear ordering σ′ = (3, 4, 5, 6, 7, 1, 2, D), leading to
the same result as seen in Figure 5c. The 1-Opt algorithm alone will also return
σ′ = (3, 4, 5, 6, 7, 1, 2, D), therefore having the best performance in this case.

5.2.2 Eades-Lin-Smyth

As also seen in the case before, the Eades-Lin-Smyth algorithm can have the
problem, that, due to the ordering of those nodes that have no incoming fixed
rule, there can be back arcs, that actually do not create cycles when inserting
them to the set of current rules. Looking at the new and old rules in Figure 6a,
we know that each algorithm will identify the same rules as possible to update,
resulting in the situation shown in Figure 6b. The disadvantage of the ELS
algorithm is visible when looking at the updates that are identified as possible
in the second round. The ELS algorithm first finds the sinks D and 3, and
the source 2, as there are no incoming arcs, see Figure 6b. Now there are two
possibilities that arise for choosing the node with the highest δ = d+−d−. Both

18

(a) Initial situation

(b) When adding arc (2, 3)

(c) When not adding arc (2, 3)

Figure 5: Different performance of the greedy algorithm due to the order of
insertion, example taken from [9]

the nodes 4 and 1 have a δ = 0, but when the algorithm chooses the node 4
first, it results in the linear ordering σ = (2, 4, 5, 1, 6, 7, 3, D). This means the
arc (6, 4) cannot be inserted, even though acyclicity would be maintained, see
Figure 6c.
The 1-Opt algorithm (also when using it only as post processing for the ELS
algorithm) and the greedy approach both update the node 6 as well, leading to
one round less than the ELS algorithm needs.

19

(a) Initial situation

(b) Situation after first round

(c) When first choosing 4 as the node with maximum δ

Figure 6: Disadvantage of the ELS algorithm

5.2.3 1-Opt

The 1-Opt algorithm has the problem, that in some cases, it may not termi-
nate. One example is shown in Figure 7, were already a few rounds were com-
puted. There are still two rules to update: (12, 10) and (10, 5). The computed
linear ordering of the fixed rules at this point, by calling topological sort, is
σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, D). The arc (10, 5) can be inserted without
creating a cycle, but, due to the positions that are possible for the node 10, it
cannot be moved to a position, where the number of back arcs can be reduced.
This is because all nodes that were looked at before, do not have back arcs any-
more, therefore not changing their positions, except for node 5, which cannot
be positioned after node 6 though, therefore staying at its position as well. As
10 needs to be positioned between the nodes 9 and 11, it cannot be moved.
This problem is solved by trying to insert resulting back arcs greedily when no
node to update is found, making it possible for the algorithm to terminate.
Both the ELS algorithm and the greedy algorithm terminate and take the same
number of rounds to do so.

20

Figure 7: Scenario, where 1-Opt does not terminate

21

6 Implementation

For the implementation Python 3.8 and the library NetworkX 2 (version 2.5.1),
which is a network analysis tool, were chosen. The graph data structure needed
for the thesis, along with implementations of the topological sort algorithm, a
check for acyclicity and planarity, that were needed for the implementation and
evaluation of the algorithms, were covered in the NetworkX library.
The software for evaluating the performance of the algorithms in a practical
approach consists of two parts: The algorithms for the construction of the eval-
uated instances and the algorithms approximating the minimum feedback arc
set, see the class diagram in Figure 8.

6.1 Algorithms

As each of the algorithms uses the same parameters and share some methods,
there is a parent class Algorithm, from which the different algorithms inherit.
Each algorithm class has a run() method, that starts the algorithm. There
further are helper methods that can be called by the run() method, to make
the code more modular and clear.
Further, for the ELS algorithm, it is necessary to state a post processing type,
which then results in the algorithm being optimized by further trying to greed-
ily add back arcs to the updated rules, or using the 1-Opt approach to further
maximize the number of updates, or even both.
Just like the post processing type for the ELS algorithm, for the greedy algo-
rithm it can be specified, whether the rules should be inserted in a random or
sorted order.

The second part of the software is the construction of the topologies, found
in the packet topologies. It consists of the converter, that converts either CSV
files containing the networks from Rocketfuel, or GML files from Topology Zoo3,
that, similar to Rocketfuel, also collects network topologies.

6.2 Construction of the Topologies

Further, the packet holds the subpacket topology construction, that takes care
of handling the choice, which topology to construct (depending on the argu-
ments given) and the runs one of the algorithms for constructing the topologies.
This can be either shortest path trees (using the Dijkstra algorithm), or random
paths, see Section 7. A subfolder files also contains the files that were used for
the evaluation.

2https://networkx.org
3http://www.topology-zoo.org

22

https://networkx.org

6.3 Controller

The controlling function comes from the main function in the main.py file. It
starts, depending on the arguments from the command line, the experiments.
There are some predefined experiments in the experiments.py file. For sim-
plification, the parameters are not shown in the class diagram. Further, the
different experiments call functions from the plotting.py file or directly print
the results to the command line.

For running the software, the command python main.py <experiment type>

<topology type> <instance> has to be entered. The experiment type can
be a single algorithm to evaluate (greedy, sorted greedy, etc.), a comparison
experiment, that compares the performance for each of the algorithms for a
certain topology and instance, the mean experiment, which runs 10 different
experiments per instance and statistically evaluates the results, and one ex-
periment, that visualizes the effects of different path lengths for the Random
Path topologies.

Figure 8: Class diagram of the software for evaluating the algorithms

23

7 Evaluation and Discussion

Experiments were run for different Rocketfuel4, an ISP topology mapping en-
gine, instances: the 1221, 1239, 1755, 3257, 3967 and 6461 instances.
Due to the topological properties of the networks, described in Section 2.3, there
are two types of topologies that were constructed to experimentally evaluate the
algorithms. One is a randomly generated path. Each node has one outgoing
and one incoming arc, except for the source, which has no incoming arc, and
the destination node, which has no outgoing arc. The other topology evalu-
ated is a shortest path tree from each node to the destination node. Therefore,
the nodes can have more than one incoming arc, but the outdegree is still 1.
For plotting and evaluating the results the libraries Pandas5, Statistics6 and
Matplotlib7 were used. Further libraries that were used were the NumPy8, the
Random9 library, the Enum10 library, and, the CSV 11 library.

7.1 Topologies

This section takes a deeper look into the construction of the evaluated topologies
and illustrates how these differ from each other.

7.1.1 Shortest Path Trees

The first experiments were done with shortest path trees. For this, a ran-
dom source node had to be chosen from the nodes in the respective instance.
Then, a shortest path tree, from the chosen source node to all other nodes,
was computed using the Dijkstra algorithm. Next, the paths were oriented to
the source node, so it becomes a destination node. As the Dijkstra algorithm
computes this on basis of edge weights, random weights were assigned using
the Gamma-distribution, when converting the files. This distribution was ex-
perimentally chosen to have a certain complexity in the updating process, as
other distributions12 assigned weights in a way that no cycles existed, or all al-
gorithms terminated within about two rounds, making it impossible to compare
the different results. The constructed graph is depicted in Figure 9. Converting
was done twice (with the random seeds 74 and 19 for reproducibility), so that
there exist two different shortest path trees (using the same source node), that

4https://research.cs.washington.edu/networking/rocketfuel/
5https://pandas.pydata.org
6https://docs.python.org/3/library/statistics.html
7https://matplotlib.org
8https://numpy.org
9https://docs.python.org/3/library/random.html

10https://docs.python.org/3/library/enum.html
11https://docs.python.org/3/library/csv.html
12Other distributions that were tried out were the uniform, normal and exponential distri-

butions.

24

https://research.cs.washington.edu/networking/rocketfuel/
https://pandas.pydata.org
https://docs.python.org/3/library/statistics.html
https://matplotlib.org
https://numpy.org
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/enum.html
https://docs.python.org/3/library/csv.html

Figure 9: Shortest Path Tree - old rules

could be put on top of each other, constructing the final topology on which the
feedback arc set was computed, graphically illustrated in Figure 10.

Figure 10: Shortest Path Tree - old and new rules

7.1.2 Random Paths

In the second experiments the different algorithms were compared by taking
a look at random paths through the instances. First, a random permutation
(using the seed 33 for reproducibility) of nodes was chosen for the construction of
a path, where each node was connected to the node before (as outgoing arc) and
after (as incoming arc), coming from a source node and leading to a destination
node. In Figure 11 this is graphically illustrated, with the node D denoting the
destination node.
Further, the new rules needed to be chosen, which also were constructed as a
random permutation of nodes, where the last node again is connected to the
same destination node as before. When combining those two digraphs, as shown
in Figure 12, it can be seen that circles can exist. Therefore, only a certain subset

25

Figure 11: Random Path - old rules

of the arcs in the new rules can be updated in the first round.

Figure 12: Random Path - old and new rules

7.2 Results

This section presents the results of the different experiments and summarizes
and discusses the performance of the different algorithms.

7.2.1 Shortest Path Trees

The construction of the Shortest Path Tree lead to the fact that the intersec-
tion of the two resulting trees is at around 50 to 70 percent. Therefore, many
nodes do not need to be updated at all. Further, no instance in the first set of
experiments of the evaluated topologies was planar.
Looking at the comparison of the algorithms for the different instances in Figure
13, for all algorithms most of the updates can be done in the first round and
they, in general, perform similarly, although the 1-Opt algorithm alone needs
more rounds until it terminates. The round in which each node is expected to
be updated can be seen in Table 1. Also here, the results are very similar for
each algorithm. As many nodes stay the same, the value is below 1. In gen-
eral it can be seen, that the expectancy is mostly higher for the ELS algorithm
without post-processing and the 1-Opt algorithm. The difference between the
algorithms is better visualized in Figure 14. It can be seen, that the size of the
feedback arc set for the 1-Opt algorithm is in most cases bigger than for the
algorithms. Further, as can be seen for the 3967 instance in Figure 14e, in the
first two rounds the size of the feedback arc set found by the ELS algorithm
is bigger, but still the number of rounds is then smaller than for the 1-Opt
algorithm. For the case of the 6461 network, the greedy algorithms have the
best performance in each round, the sorted greedy algorithm even more so, but
still needing the same amount of rounds to terminate as the different versions of
the ELS algorithm. A difference between the ELS, post processed by greedily

26

(a) 1221 (108 rules to update) (b) 1239 (315 rules to update)

(c) 1755 (87 rules to update) (d) 3257 (161 rules to update)

(e) 3967 (79 rules to update) (f) 6461 (141 rules to update)

Figure 13: Shortest Path Trees: Evaluation of the different algorithms for dif-
ferent networks

adding back arcs, and post processed by the 1-Opt and greedily adding back
arcs could not be found in these experiments.
The box plots, seen in Figure 15, in which 60 different experiments are evaluated,
show that most of the algorithms perform similarly when it comes to the number

27

Algorithm/ Instance 1221 1239 1755 3257 3967 6461
Greedy 0.4579 0.6561 0.6279 0.4313 0.6154 0.6286

Sorted Greedy 0.4579 0.6592 0.6279 0.4313 0.6154 0.6214
ELS 0.4953 0.6720 0.6512 0.4375 0.6538 0.6429

ELS + 1-Opt 0.4579 0.6561 0.6512 0.4375 0.6154 0.6357
ELS + Greedy 0.4579 0.6561 0.6279 0.4375 0.6154 0.6286

ELS + 1-Opt + Greedy 0.4579 0.6561 0.6279 0.4375 0.6154 0.6286
1-Opt 0.5421 0.7834 0.6279 0.4875 0.6410 0.6714

Table 1: Round, in which each node is expected to be updated

of rounds needed, until the update is finished. Also here it can be seen that the
1-Opt algorithm alone takes the most number of rounds until terminated. All of
the quartiles, as well as the minima and maxima, are the same. The difference
for the different topologies here can be seen evaluating the geometric mean in
Table 2. In four of the 60 different experiments, the graph G = (V,A1 ∪ A2),
containing both the set of old and new rules, was planar.

28

(a) 1221 (107 rules to update) (b) 1239 (314 rules to update)

(c) 1755 (86 rules to update) (d) 3257 (160 rules to update)

(e) 3967 (78 rules to update) (f) 6461 (140 rules to update)

Figure 14: Shortest Paths: Evaluation of the different algorithms for different
networks - Size of the FAS relative to the size of all rules

29

Figure 15: Shortest Paths: Statistical evaluation of the different algorithms for
60 different experiments

30

7.2.2 Random Paths

The random path topologies were evaluated using the nodes (but randomly
generated arcs based on permutations of the nodes) of several networks from
Rocketfuel to be able to make a comparison to the topology of the Shortest Path
Trees. The experiments lead to different results for the different algorithms.
Interestingly, in the first round, all algorithms can update the same number of
rules, and in fact the same rules. As the linear ordering of the old rules is strict
and cannot be changed, only new rules, that are forward arcs when adding them
to the set (including those that stay the same), can be part of the update, as
there is no other possible permutation of the nodes, that does not have fixed
arcs as back arcs. All further arcs are part of the feedback arc set. The order, in
which nodes are chosen for the update does not matter, therefore all algorithms
perform the same in the first iteration. Afterwards, some differences can be seen.
Figure 16 illustrates in which round which percent of rules can be updated. As
the data sets used have a different number of nodes, the results for each data
set also varies.
For the topology, having the same nodes as the 1221 data set, which has 108
nodes, plus one further added node, the destination node, and for which there-
fore 108 nodes needed to be updated, the different algorithms needed 5 to 8
rounds. The greedy approach, in which the nodes where inserted in a random
order, as well as the sorted version, perform the same. Both these algorithms
and the ELS algorithm that uses greedily adding back arcs, perform the best
in this situation. Also, the 1-Opt algorithm performs similarly for this case.
The ELS algorithm without post processing performs worst in terms of rounds
for these sets of rules. This can be also examined when looking at the other
examples. Using greedily adding back arcs, or even the 1-Opt algorithm as a
post processing method, increases its performance.
For all other networks, except for the one with 108 nodes to update, the 1-
Opt algorithm alone does not perform as well as the greedy approaches, or the
Eades-Lin-Smyth algorithm when post processing the linear ordering.
The differences between the greedy and sorted greedy algorithm are minimal,
but for the case of the network with 161 nodes to update, sorting made a dif-
ference and increased the performance in terms of number of rounds.
In Figure 17, the size of the feedback arc set relative to the size of the set of arcs
of the fixed and new rules is shown. Also here it can be seen that the greedy
algorithm (when inserting the arcs in a random or sorted order), and using
greedily adding back arcs as post processing of the ELS algorithm, perform the
best as the size of the feedback arc set found using these algorithms is smaller
than when using the ELS algorithm, the 1-Opt algorithm or the ELS algorithm
with the 1-Opt algorithm as a post processing step. Using both the greedy
approach and the 1-Opt algorithm as post processing for the ELS algorithm
does not have an advantage in most cases.
In all cases about 50 percent of all updates where made in the first iteration of
the algorithm, this is also the case when using other seeds. Further experiments
can be seen in Figure 22, and Lemma 7.1. Running the experiment with ten

31

(a) 108 rules to update (b) 315 rules to update

(c) 87 rules to update (d) rules to update

(e) 79 rules to update (f) 141 rules to update

Figure 16: Random Paths: Evaluation of the different algorithms for different
networks

different seeds (from 33 to 42) for each of the data sets and evaluating the
performance statistically, shows that the greedy approach (in sorted or random
insertion order) on its own or as a combination with the ELS algorithm performs
best, the median lies at 6 rounds, see Figure 18. A difference between the sorted

32

(a) 108 rules to update (b) 315 rules to update

(c) 87 rules to update (d) 161 rules to update

(e) 79 rules to update (f) 141 rules to update

Figure 17: Random Paths: Evaluation of the different algorithms for different
networks - Size of the FAS relative to the size of all rules

and the random version can be seen. Where 8 rounds is an outlier for the sorted
version, 9 rounds is still in the span for the random version, therefore sorting
can make the algorithm more stable. Similarly, only using the greedy approach
as a post processing method for the ELS algorithm performs a bit better than

33

the greedy algorithm (in random insertion order) does. The 1-Opt algorithm
and the ELS algorithm have a higher range and in general need more rounds as
the minimum lies at 6 rounds for both of the algorithms, while for the others it
lies at 4 rounds.

Figure 18: Random Paths: Statistical evaluation of the different algorithms for
60 different experiments

34

Further evaluations were made with random paths of a certain length, see Figure
19. For this experiment 50 different iterations were done for each path length
and the arithmetic mean was calculated. It can be seen, that for smaller topolo-
gies, especially for those of lengths that are smaller than 50, it takes less rounds
until the updating process is finished (even observing some planar instances),
with the general tendency of a logarithmic rise.

Figure 19: Random Paths: Evaluation of number of rounds for different lengths
of paths

Furthermore, it was evaluated, in which round each node is expected to be
updated. For most algorithms, the expectancy lies at less than two rounds,
the ELS and 1-Opt algorithm also perform worse in this regard. The best
performances can be observed for the greedy approaches or the ELS algorithm
that uses the greedy algorithm as a post processing method, see Figure 20.
When plotting the quadratic costs per node, a significant difference between
the greedy algorithms or the ELS, when using the greedy approach as a post
processing method, still cannot be observed, see Figure 21.
Also for these experiments, about 50 percent of the nodes can be updated in
the first round, see Figure 22. The fluctuation for the experiments with a path
length of less than 100 can be explained by the fact, that, due to a smaller
sample size, outliers have a bigger impact on the result. Still, it can be seen
that the number of updated nodes in the first round (including those that do
not need to be updated), is about 50 percent of the nodes in the graph. We can
now prove the following lemma:

Lemma 7.1. The expected value for the number of nodes updated in the first
round (including those, that do not need to be updated) is 1/2 of all nodes, or
n+1
2 nodes, with n being the length of the path and therefore the number of

updates that need to be done.

Proof. Due to the strict ordering that is given in the first round, it is restricted,
that only those new rules that are forward arcs according to the linear ordering

35

Figure 20: Random Paths: Expected value for the round in which each node is
updated, for different lengths of paths

Figure 21: Random Paths: Quadratic costs per node, for different lengths of
paths

36

returned by the topologically sorting the old rules can be updated. Given the
nodes v0, v1, v2, ..., vn−1, vn, we know that for each node vi the probability of
the new outgoing arc being a forward arc is (n − i)/n, as there are i places in
the linear ordering, that would create back arcs, and therefore n− i possibilities
for creating forward arcs. The node vn does not have any outgoing arcs, as it
is the destination node. Therefore, the expected value is given by n

n + n−1
n +

...+ n−(n−1)
n = 1

n

n∑
i=1

i = n(n+1)
2n = n+1

2 , with n denoting the number of updates

that need to be done and n+ 1 being the number of nodes.

Similarly it can be proven, how many arcs stay the same.

Lemma 7.2. The number of arcs, that stay the same, is expected to be 1.

Proof. For each vertex vi, the probability, that the vertex after stays the same
in the two different permutations, is 1/n, as there are n different possibilities,
where the vertex that was directly after vi in the first permutation, can be in the

second permutation. Therefore this can be summed up:
n−1∑
i=0

1
n = n 1

n = 1.

This can also be seen in Figure 16, were only a small amount of nodes (or no
nodes at all), belong to ”round 0”, which denotes the number of nodes, that do
not need to be updated.

Figure 22: Random Paths: Percentage of updates done in the first round, for
different lengths of paths

37

7.2.3 Summary

In the case of the random paths, a difference between the algorithms is easier
visible than for the case of the shortest path trees, as can be seen in the Figures
16, 17 and 18. While in the first round, all updates that can be made are the
same for all of the algorithms, a visible difference is found for the second round,
in which the ELS algorithm alone in most cases can make the least amounts
of updates, followed by the 1-Opt algorithm. Especially for the instance of the
network with 161 nodes to update, while the ELS algorithm has updated about
65 percent of the nodes, the greedy algorithm (sorted or in random insertion
order), has updated about 80 percent of its rules already. Also when it comes
to the number of rounds needed until the updating process is finished, the ELS
algorithm alone performed worse than the other algorithms. Looking at the box
plots from Figure 18, the ELS algorithm has the highest maximum counting the
number of rounds, with the 1-Opt algorithm having a slightly lower median
and maximum, but a higher outlier. This can also be seen in Table 2 below,
where the geometric mean of the different algorithms for the different topologies
is shown.
For the shortest path trees, it can be seen that the ELS alone, as well as with the
post processing method of running the 1-Opt algorithm on the resulting linear
ordering, perform slightly worse than the greedy algorithm or when using the
greedy algorithm as post processing method for the ELS algorithm. The sorted
greedy algorithm performs slightly better than all the other algorithms in the
experiments. In this case, the 1-Opt algorithm is the least favorable algorithm
though, as its median, maximum, and geometric mean, counting the number of
rounds, all are the highest of the evaluated experiments.
While the state-of-the-art algorithm is the greedy approach, in the evaluated
experiments the sorted greedy algorithm was favorable, also using the ELS with
greedily adding back arcs performed equally or even slightly better, in terms of
number of rounds, than the greedy algorithm alone, for both of the topologies.
When looking at the size of the feedback arc set, e.g. in Figure 14a, comparing
the ELS with the greedy algorithm as a post processing method, and the greedy
algorithms, the greedy algorithms perform slightly better.

Algorithm/Topology Shortest Path Tree Random Path
Greedy 3.47 5.88
Sorted Greedy 3.46 5.78
ELS 3.58 8.95
ELS + 1-Opt 3.54 6.59
ELS + Greedy 3.47 5.78
ELS + 1-Opt + Greedy 3.47 5.74
1-Opt 4.66 8.89

Table 2: Geometric mean of the number of rounds needed by the algorithms until
the updating process is finished for the different topologies for 60 experiments

38

8 Conclusions and Future Work

There are many possible ways to approximate the feedback arc set, and due to
the special case of network updates, where a set of fixed rules never can be part
of the feedback arc set, adaptations have to be made. Some of the algorithms
that provide good results for the general feedback arc set problem were adapted
and evaluated. The experiments in this thesis have shown that the state-of-the-
art greedy algorithm has been proven to be performant and to terminate within
a small number of rounds, while also updating a high number of nodes in the
first rounds. While this algorithm on its own already performed well, sorting
the rules beforehand can make it even more efficient, though the differences are
quite small. Also using the greedy approach as a post processing method for
the Eades-Lin-Smyth algorithm showed that it can further increase the number
of rounds for a few cases.
The ELS algorithm or the 1-Opt algorithm on their own are not recommended
to use when trying to update the networks in a small number of rounds, espe-
cially observed in the case of the random path topologies, that in general were
the instances, that were harder to update.

As this thesis only highlights the qualitative aspects of the algorithms, stud-
ies on the runtime performance in a practical setting is an open question for
research. Other open questions include trying out different approximation al-
gorithms for the feedback arc set and applying them to the topic of network
updates, as well as experimenting with variations of the algorithms used for
this thesis.
Further, as some planar instances were observed, adapting the algorithms for
optimally solving the feedback arc set problem is an interesting task for fu-
ture work.

39

References

[1] Ailon, N., Charikar, M., and Newman, A. Aggregating inconsistent
information: Ranking and clustering. Journal of the ACM 55, 5 (2008),
1–27.

[2] Amiri, S. A., Ludwig, A., Marcinkowski, J., and Schmid, S. Tran-
siently consistent sdn updates: Being greedy is hard. In Structural Infor-
mation and Communication Complexity (Cham, 2016), J. Suomela, Ed.,
Springer International Publishing, pp. 391–406.

[3] Berger, B., and Shor, P. W. Approximation alogorithms for the max-
imum acyclic subgraph problem. In Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms (USA, 1990), SODA ’90, Society
for Industrial and Applied Mathematics, p. 236–243.

[4] Bessy, S., Fomin, F. V., Gaspers, S., Paul, C., Perez, A., Saurabh,
S., and Thomassé, S. Kernels for feedback arc set in tournaments. Jour-
nal of Computer and System Sciences 77, 6 (2011), 1071–1078.

[5] Eades, P., Lin, X., and Smyth, W. A fast and effective heuristic for
the feedback arc set problem. Information Processing Letters 47, 6 (1993),
319–323.

[6] Even, G., (Seffi) Naor, J., Schieber, B., and Sudan, M. Approxi-
mating minimum feedback sets and multicuts in directed graphs. Algorith-
mica 20, 2 (1998), 151–174.

[7] Foerster, K.-T., Ludwig, A., Marcinkowski, J., and Schmid, S.
Loop-free route updates for software-defined networks. IEEE/ACM Trans-
actions on Networking 26, 1 (2018), 328–341.

[8] Forster, K.-T., and Wattenhofer, R. The power of two in consis-
tent network updates: Hard loop freedom, easy flow migration. In 2016
25th International Conference on Computer Communication and Networks
(ICCCN) (2016), pp. 1–9.

[9] Förster, K.-T., Mahajan, R., and Wattenhofer, R. Consistent
updates in software defined networks: On dependencies, loop freedom, and
blackholes. In 2016 IFIP Networking Conference (IFIP Networking) and
Workshops (2016), pp. 1–9.

[10] Garey, M. R., and Johnson, D. S. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA,
1990.

[11] Gavril, F. Some np-complete problems on graphs. In 11th Conference on
Information Sciences and Systems (1977), pp. 91–95.

40

[12] Gupta, S. Feedback arc set problem in bipartite tournaments. Information
Processing Letters 105, 4 (2008), 150–154.

[13] Hanauer, K. Linear ordering of sparse graphs, 2018.

[14] Karp, R. M. Reducibility among Combinatorial Problems. Springer US,
Boston, MA, 1972, pp. 85–103.

[15] Kudelić, R., and Ivković, N. Ant inspired monte carlo algorithm for
minimum feedback arc set. Expert Systems with Applications 122 (2019),
108–117.

[16] Kurose, J. F., and Ross, K. W. Computer networking : a top-down ap-
proach, global edition, seventh edition. ed. Global edition. Pearson, Boston
München, 2017.

[17] Lucchesi, C. Minimax equality for directed graphs, 1976.

[18] Ludwig, A., Marcinkowski, J., and Schmid, S. Scheduling loop-free
network updates: It?s good to relax! In ACM Symposium on Principles of
Distributed Computing (PODC) (2015).

[19] Ludwig, A., Rost, M., Foucard, D., and Schmid, S. Good network
updates for bad packets waypoint enforcement beyond destination-based
routing policies. In 13th ACM Workshop on Hot Topics in Networks (Hot-
Nets) (2014).

[20] Mahajan, R., and Wattenhofer, R. On consistent updates in software
defined networks. HotNets-XII, Association for Computing Machinery.

[21] Marti, R., and Reinelt, G. The linear ordering problem. Exact and
heuristic methods in combinatorial optimization, vol. 175. Springer-Verlag
Berlin Heidelberg, 01 2011.

[22] Ramachandran, V. A minimax arc theorem for reducible flow graphs.
SIAM journal on discrete mathematics 3, 4 (1990), 554–560.

[23] Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., and
Walker, D. Abstractions for network update. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (New York, NY, USA, 2012),
SIGCOMM ’12, Association for Computing Machinery, p. 323–334.

[24] Rivest, R., Stein, C., Molitor, P., Leiserson, C. E., and Cormen,
T. H. Algorithmen - Eine Einführung. De Gruyter, 2013.

[25] Trudeau, R. J. Introduction to graph theory, dover ed., 1. publ.. ed.
Dover Publ., New York, NY, 1993.

41

	Motivation
	Preliminaries
	Definitions and Terminology
	Equivalent and Related Problems to the FASP
	Topology of the Networks

	Related Work
	Feedback Arc Set Problem
	Software Defined Networking and Network Updates

	Algorithms
	Variation of the Eades-Lin-Smyth-Algorithm
	1-Opt
	Greedy Approach

	Performance of the Algorithms
	Worst Case Bounds
	Advantages and Disadvantages of the Algorithms
	Greedy Approach
	Eades-Lin-Smyth
	1-Opt

	Implementation
	Algorithms
	Construction of the Topologies
	Controller

	Evaluation and Discussion
	Topologies
	Shortest Path Trees
	Random Paths

	Results
	Shortest Path Trees
	Random Paths
	Summary

	Conclusions and Future Work

