

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Reduced Nested Dissection for Fill Reducing Node
Orderings“

verfasst von / submitted by

Wolfgang Martin Ost, BSc ETH MSc ETH

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2019 / Vienna 2019

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 910

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Computational Science

Betreut von / Supervisor:

Mitbetreut von / Co-Supervisor:

Univ.-Prof. Dr. Monika Henzinger

Dipl.-Math. Dipl.-Inform. Dr. Christian Schulz

Prof. Darren Strash, Hamilton College

ii

web-version, modified titlepage

Abstract

When factorizing sparse matrices, non-zeros can be introduced. These non-
zeros are called fill-in. If the fill-in is large, factorization can become pro-
hibitively expensive in terms of storage and computation time. A permuta-
tion of a matrix can reduce the fill-in and make factorization feasible. The
minimum fill-in problem is to find a permutation that minimizes the fill-in.
It is commonly solved using a graph representation of the matrix.

We introduce reduction rules for the minimum fill-in problem and ap-
ply them in a nested dissection algorithm we call reduced nested dissection.
Reducing the graphs reduces the time to compute node separators, which
speeds up the nested dissection algorithm.

We evaluate the performance of reduced nested dissection on a set of
social networks, citation networks and web graphs. Our reductions initially
reduce the graphs to approximately half their size. They improve the number
of non-zeros by 2.5% and the operation count of factorization by 5% over
nested dissection without reductions. The running time is reduced by 45%
on average, with the best improvement at 95.6%.

We also introduce an algorithm for the minimum fill-in problem based on
graph clustering, intended to allow for faster computation of node orderings
compared to nested dissection. Orderings from this algorithm lead to orders
of magnitudes more non-zeros compared to nested dissection, and the running
time is reduced only slightly over reduced nested dissection.

iii

iv

Zusammenfassung

Bei der Faktorisierung von dünn besetzten Matrizen entstehen oft neue
Nicht-Nullen. Diese neuen Elemente werden als Fill-In bezeichnet. Ist
der Fill-In groß, kann die Faktorisierung im Hinblick auf Speicherbedarf
und Laufzeit teuer werden. Eine Permutation der Matrix kann den
Fill-In reduzieren und die Faktorisierung ermöglichen. Das Problem,
eine Permutation zu finden, die den Fill-In minimiert, wird üblicherweise
mit einem graphtheoretischen Ansatz gelöst.

Wir entwickeln einen Algorithmus auf der Basis von Nested Dissection,
genannt Reduced Nested Dissection. Mit Hilfe von Reduktionsregeln
verkleinern wir die Graphen und verringern damit die Zeit, die benötigt
wird, um Trenner zu finden. Damit wird der Nested Dissection Al-
gorithmus signifikant beschleunigt.

Wir evaluieren Reduced Nested Dissection anhand von sozialen Netzw-
erken und ähnlichen Graphen. Mit unseren Reduktionen verringert sich die
Anzahl an Nicht-Nullen in den Matrixfaktoren um 2.5% und die Anzahl an
Operationen in der Faktorisierung um 5%. Die Laufzeit verbessert sich im
Schnitt um 45%, mit einer maximalen Verbesserung von 95.6%.

Weiterhin führen wir einen Algorithmus für das Fill-In Problem ein, der
auf Clustering von Graphen aufbaut. Das Ziel ist, Permutationen in gerin-
gerer Zeit als mit Reduced Nested Dissection zu erhalten. Dieser Algorithmus
führt zu Permutationen mit Anzahl an Nicht-Nullen und Operationen die um
Größenordnungen über Ergebnissen von Nested Dissection liegen. Er ist nur
wenig schneller als Reduced Nested Dissection.

v

vi

Acknowledgment

I am thankful to Dr. Christian Schulz and Prof. Darren Strash for their
guidance and valuable insight. Our weekly meetings were always helpful.

The thesis would not have been possible without Prof. Monika
Henzinger’s official supervision.

Thanks also go to my friends who were a great source of motivation
and moral support over the last two years.

I am grateful to my parents for supporting me through all my studies and
enabling me to pursue this second Master’s degree. I would not be where
I am without their continued patience and support.

vii

viii

Contents

1 Introduction 1
1.1 Our Contribution . 3
1.2 Structure of the Thesis . 3

2 Fundamentals 5
2.1 Symmetric Factorization . 6
2.2 Node Ordering . 7

3 Related Work 11
3.1 Minimum Fill-In Orderings 11
3.2 The Minimum Degree Algorithm 12
3.3 Nested Dissection . 14
3.4 Node Separators . 15
3.5 Reduction Rules . 16
3.6 Label Propagation . 17

4 Reduced Nested Dissection 19
4.1 Exact Reductions . 20

4.1.1 Simplicial Nodes . 20
4.1.2 Indistinguishable Nodes 21
4.1.3 Twins . 23
4.1.4 Path Compression . 23

4.2 Inexact Reductions . 27
4.2.1 Degree-2 Elimination 27
4.2.2 Triangle Contraction 28

4.3 Node Ordering with Graph Clustering 29

5 Experimental Evaluation 31
5.1 Implementation Details . 31
5.2 Experimental Setup . 33
5.3 Experimental Results . 36

ix

x CONTENTS

5.3.1 Combinations of Reductions 37
5.3.2 Effect of the Recursion Limit on Running Time and

Quality . 46
5.3.3 Effect of the Imbalance Constraint on Running Time

and Quality . 50
5.3.4 Exhaustive Application of Reductions 54
5.3.5 Node Ordering with Clustering 57

6 Discussion 61
6.1 Future Work . 61
6.2 Conclusion . 62

Bibliography 63

Chapter 1

Introduction

Solving sparse linear systems of equations

Ax = b (1.0.1)

is a fundamental task in scientific computing. Such equations arise in a
variety of applications, such as computational fluid dynamics, structural en-
gineering, economic modeling and circuit simulation [16].

Sparse linear systems can be solved by direct methods [17, 23]. Such
methods decompose the matrix A into factors that simplify the solution of
the system. The drawback is, that such factors can become dense, i.e., they
have many more non-zeros than the original matrix [17, 23, 41]. Then,
solving the system is prohibitively expensive in terms of storage and com-
putation time. The number of new non-zeros introduced by factorization is
called the fill-in. By reordering the system, this fill-in can be significantly
reduced, leading to sparse factors [17, 23, 41].

For symmetric positive definite matrices1 we can reorder rows and
columns by a symmetric permutation PAP> [23, 41]. The minimum
fill-in problem is to find a permutation matrix P , such that the number
of non-zeros introduced during factorization is minimized.

This problem can be solved using a graph theoretic approach introduced
by Porter [37] and Rose [41]. A symmetric matrix A = (aij)

n
i,j=1 is represented

by an undirected graph G, where nodes represent the rows and columns of A.
Nodes i, j in G are connected by an edge if the matrix element aij 6= 0. An
elimination step in A is reflected in G by removing the node corresponding
to the eliminated column and connecting its neighborhood to form a clique.
These added edges provide an upper bound to the number of non-zeros intro-
duced in an elimination step. By minimizing this bound, we obtain the de-
sired permutation matrix P . Figure 1.1 illustrates this model of elimination.

1which can be factored by Cholesky factorization [23]

1

2 CHAPTER 1. INTRODUCTION

W
ith

ou
tO

rd
er

in
g

∗
∗
∗
∗
∗
∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

         

         
1 2

34

5

6 7

Sy
m

m
et

ric
El

im
in

at
io

n

∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

         

         
2

34

5

6 7

W
ith

O
rd

er
in

g

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗
∗
∗
∗
∗
∗

         

         
7 2

34

5

6 1

Sy
m

m
et

ric
El

im
in

at
io

n

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗
∗

∗
∗
∗
∗
∗
∗

         

         
7 2

34

5

6

Fi
gu

re
1.

1:
A

m
at

rix
an

d
th

e
co

rr
es

po
nd

in
g

gr
ap

h
be

fo
re

an
d

af
te

r
a

st
ep

of
sy

m
m

et
ric

G
au

ss
ia

n
el

im
in

at
io

n.
A

bo
ve

:
un

or
de

re
d

m
at

rix
,b

el
ow

:
pe

rm
ut

ed
m

at
rix

.
N

ot
e

th
at

pe
rm

ut
in

g
th

e
fir

st
an

d
se

ve
nt

h
co

lu
m

n
co

rr
es

po
nd

s
to

ex
ch

an
gi

ng
no

de
s

1
an

d
7.

W
ith

ou
t

th
e

pe
rm

ut
at

io
n

th
e

m
at

rix
is

fil
le

d
in

co
m

pl
et

el
y.

W
ith

th
e

pe
rm

ut
at

io
n

no
fil

l-i
n

is
ge

ne
ra

te
d

du
rin

g
th

e
fa

ct
or

iz
at

io
n.

1.1. OUR CONTRIBUTION 3

The minimum fill-in problem is NP-complete [53], so heuristics such as the
minimum degree algorithm [41, 50] and nested dissection [18] are commonly
used. The minimum degree algorithm is a greedy scheme, eliminating the
minimum degree node at every step. Nested dissection computes a node
separator and orders the subgraphs recursively.

1.1 Our Contribution
We introduce reduction rules to reduce the graph size, allowing for faster
computation of fill-reducing orderings, while maintaining or even improving
their quality. We extend nested dissection by applying these reductions at
every level, which reduces the time to compute the node separator. We also
describe a new algorithm for the fill-in problem based on graph clustering.

Our reduction rules initially reduce the graphs to approximately half
their size. The running time of nested dissection is reduced by approxi-
mately 45%. Our reductions reduce the number of non-zeros and operation
count by around 2.5% and 5%, respectively.

The clustering based algorithm leads to higher fill-in and operation count
than nested dissection. It is faster than nested dissection and often as fast
or faster than nested dissection with reductions.

1.2 Structure of the Thesis
The thesis is structured as follows. Chapter 2 introduces the graph theoretic
basics and formally defines node orderings and the fill-in problem. Chap-
ter 3 provides an overview over related problems and algorithms. Chapter 4
introduces our algorithm and the reduction rules. Our experiments to eval-
uate our implementation are described in Chapter 5. Chapter 6 provides an
overview over future challenges and concludes the thesis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

An undirected graph G = (V,E) is a set of nodes V connected by a set E
of undirected edges. The set of nodes adjacent to a node x ∈ V form its
open neighborhood NG(x) := {y ∈ V | {x, y} ∈ E}. The closed neighborhood
NG[x] also contains the node itself: NG[x] := NG(x) ∪ {x}. The size of a
node’s neighborhood is its degree deg(x) := |NG(x)|. For a set of nodes
A ⊆ V we define its neighborhood NG(A) := (∪x∈ANG(x)) \ A. When clear
from the context we omit G and write N(x), N [x] and N(A), respectively.

Let a, b ∈ V . Node a dominates node b if N [b] ⊆ N [a]. If N [a] = N [b],
then a and b are indistinguishable. Nodes a and b are twins if N(a) = N(b).

Given a set of nodes A ⊆ V , the set of edges with both end-
points in A is E(A) := {{a, b} ∈ E | a, b ∈ A}. The set A induces
a subgraph G[A] := (A,E(A)).

A graph G = (V,E) is complete if all nodes are connected by an edge.
A clique is a set of nodes C ⊆ V that induces a complete graph G[C]. An
edge clique cover is a set of cliques K, such that for every edge {x, y} ∈ E,
there is a clique C ∈ K with x, y ∈ C.

A set of nodes X ⊆ V is an induced cycle, if its induced subgraph G[X] is a
cycle.

A graph G is triangulated or chordal, if for every cycle of four or more
nodes, there is an edge connecting two non-consecutive nodes in the cy-
cle. A triangulation of a graph G = (V,E) is a set of edges T , such
that (V,E ∪ T) is a triangulated graph. A triangulation is minimal if no
proper subset is also a triangulation. If there is no triangulation T ′ with
|T ′| < |T |, then T is a minimum triangulation.

A node separator of a graph G = (V,E) is a set of nodes S ⊂ V whose
removal separates V into disjoint sets V1 and V2, such that there are no
edges between V1 and V2. We call V1 and V2 the components and the in-
duced subgraphs G[S ∪ Vi] the leaves of S. A separator that is also a clique

5

6 CHAPTER 2. FUNDAMENTALS

is called a separation clique. Usually, we are interested in small separa-
tors for which |V1| ≈ |V2|. To this end, we introduce a balance constraint:
|Vi| ≤ (1 + ε)d|V |/2e, for some parameter ε ≥ 0.

The graph partitioning problem is related to the node separator problem:
Find sets V1, . . . , Vk, such that V1∪· · ·∪Vk = V and Vi∩Vj = ∅ for i 6= j. The
set of cut edges C = {{x, y} ∈ E | x ∈ Vi, y ∈ Vj, i 6= j} is called edge separa-
tor. A node x ∈ Vi with a neighbor y ∈ Vj, i 6= j is a boundary node. The set
of boundary nodes is a node separator. In the graph partitioning problem,
the objective is usually to minimize the size of the edge separator. As in the
node separator problem, a balance constraint ensures that the partitions are
of similar size: ∀ i ∈ {1, . . . , k} : |Vi| ≤ (1 + ε)d|V |/ke, with ε ≥ 0.

A clustering of a graph is a partitioning where the number of partitions
k is unknown and there is no balance constraint. Formally, we can define a
cluster as a set of nodes that are connected in some sense. However, there
is a wide variety of possible definitions [40].

In a graph G = (V,E), a matching is a set of edges M ⊆ E where no two
edges in M share a node, i.e., for all ei, ej ∈ E ei ∩ ej = ∅. An independent
set is a set of nodes I ⊆ V where no two nodes in I are connected by an
edge, i.e., for all x, y ∈ I {x, y} /∈ E. A set K ⊆ V is a vertex cover if
every edge e ∈ E is incident to at least one node in K.

A reduction rule for some problem is a polynomial-time transformation
of a graph G = (V,E) into a reduced graph G′ = (V ′, E ′), where |V ′| ≤ |V |
and |E ′| ≤ |E|. A solution to the problem on G′ can be mapped to a solution
on G. If an optimal solution on G′ is mapped to an optimal solution on G,
then the reduction rule is exact. Otherwise, it is inexact.

Often, we use contractions to reduce a graph. Contracting an edge
{x, y} ∈ E merges the nodes x and y, summing the node weights. Any
parallel edges in the transformed graph are replaced by a single edge, again
summing the weights. Similarly, we contract a set of nodes X ⊆ V by
merging all nodes in X and replacing parallel edges with a single edge. Un-
contracting an edge or a set of nodes reverts the contraction.

2.1 Symmetric Factorization
Consider a linear system Ax = b, where A ∈ Cn×n and A is self-adjoint and
positive definite. Cholesky factorization decomposes A into a lower triangular
matrix L and its transpose L>, such that A = LL>. The system LL>x = b
can then be solved by back and forward substitution. LDL-factorization
introduces an additional diagonal factor D and decomposes A = LDL>. In
LDL-factorization the matrix L is unit lower triangular.

2.2. NODE ORDERING 7

To compute the Cholesky factorization we write A as

A =

(
a w>

w B

)
, (2.1.1)

where w ∈ Cn−1, B ∈ C(n−1)×(n−1). Then column and row elimination yields

A =

(
1 0
w
a

I

)
L′
1

(
a 0

0 B − ww>

a

)
A′

1

(
1 w>

a

0 I

)
L′>
1

, (2.1.2)

where I is the identity matrix. The matrix A′
1 can be further factorized and

we obtain

A =

(√
a 0

w√
a

I

)
L1

(
1 0

0 B − ww>

a

)
A1

(√
a w>

√
a

0 I

)
L>
1

. (2.1.3)

By repeating this process on the submatrix B − ww>
√
a

we obtain a factor-
ization L1L2 · · ·LnIL

>
n . . . L>

2 L
>
1 , where L1L2 · · ·Ln = L.

By omitting the factorization step in (2.1.3), we obtain an LDL-
factorization. Then A = L′

1L
′
2 · · ·L′

nDL′>
n · · ·L′>

2 L′>
1 with L = L′

1L
′
2 · · ·L′

n.

2.2 Node Ordering
Let G = (V,E) be a graph with vertices V and edges E.

Definition 2.2.1. The deficiency DG(x) of a node x in a graph G is the set
of distinct pairs of nodes in N(x), that are not themselves neighbors:

DG(x) := {{a, b} | a, b ∈ N(x), a 6= b, a /∈ N(b)}.

When clear from the context we omit G and write D(x).

Definition 2.2.2. Eliminating a node x from a graph G = (V,E) results in
the elimination graph Gx:

Gx := (V \ {x}, Ex),

where Ex := E(V \ {x}) ∪DG(x).

8 CHAPTER 2. FUNDAMENTALS

The elimination graph is obtained by removing x and its incident edges
from G, and connecting the neighbors of x to form a clique.

The elimination graph obtained by eliminating a set of nodes X ⊆ V is de-
fined as

GX := (. . . ((Gx1)x2) . . .)xm , (2.2.1)

where xi ∈ X, i = 1, . . . ,m.

Definition 2.2.3. A node ordering of a graph G = (V,E) with n = |V | is a
bijection σ : {1, 2, . . . , n} → V .

An ordering σ of a graph G defines a sequence of elimination
graphs G(1)G(2) . . . G(n), where

G(i) :=

{
(G(i−1))σ(i) if i = 1, . . . , n

G if i = 0.
(2.2.2)

In G(n), all nodes have been eliminated, i.e., G(n) = (∅, ∅).
The fill-in associated with an ordering is defined as

φ(G, σ) :=
n∑

i=1

|DG(i−1)(σ(i))|. (2.2.3)

We denote the minimum fill-in ordering of a graph G by

Σ(G) = argmin
σ
{φ(G, σ)}, (2.2.4)

with the minimum fill-in Φ(G) = φ(G,Σ(G)). Note that

Φ(G) ≥ Φ(G(1)) ≥ . . . ≥ Φ(G(n−1)). (2.2.5)

An ordering σ of a graph G generates a triangulation of G

T (σ) :=
n⋃

i=1

DG(i−1)(σ(i)). (2.2.6)

A minimum fill-in ordering Σ(G) generates a minimum triangulation
T (Σ(G)), where Φ(G) = |T (Σ(G))| [36]. A triangulation T is a minimal
triangulation if no proper subset of T is also a triangulation. An ordering
that generates a minimal triangulation is minimal. If G is triangulated,
then it has a perfect elimination order, i.e., Φ(G) = 0.

2.2. NODE ORDERING 9

We use the following notation for node orderings:

σ = x1x2 · · ·xn (2.2.7)

corresponds to

σ(1) = x1,

σ(2) = x2,

...
σ(n) = xn.

(2.2.8)

We write xΣ(Gx) if x is to be eliminated before the nodes in Gx. When-
ever a set of nodes P = {p1, p2, . . . , pn} can be eliminated in any order, we
use P in the notation instead of p1p2 · · · pn. For example

PΣ(GP) (2.2.9)

is an ordering in which the nodes in P are eliminated in any or-
der before the nodes in GP .

10 CHAPTER 2. FUNDAMENTALS

Chapter 3

Related Work

In this chapter, we give an overview over algorithms for the minimum fill-in
problem and describe two of them in more detail. Then, we shortly review
a common approach to computing separators and discuss reduction rules.
Lastly, we describe the label propagation algorithm.

3.1 Minimum Fill-In Orderings
Yannakakis has proven that the problem of finding a minimum fill-in ordering
is NP-complete [53]. Exact algorithms have been introduced in the context
of non-serial dynamic programming [7, 8], but they are not practical for large
matrices due to their exponential running time [41]. For graphs with a perfect
elimination order, the problem can be solved in O(|V | + |E|) time [43].

Tinney and Walker [50] introduced a heuristic algorithm where the
next column to eliminate is selected based on the number of non-zeros.
This algorithm is known as the minimum degree algorithm, since the
node with the smallest degree is selected to be eliminated at each step
[41]. There have been several improvements to this algorithm, both
in its design and implementation [19, 20, 22].

A significant part of the minimum degree algorithm’s runtime is spent in
updating node degrees. Most of the improvements to the minimum degree
algorithm are thus focused on reducing the number of nodes to update [22].
Amestoy et al. [3] introduce an approximate minimum degree algorithm in
which the degree update is not performed exactly.

The minimum deficiency algorithm is a greedy algorithm similar to the
minimum degree algorithm [41, 50]: at every step the node with the smallest
deficiency is eliminated. If the graph to be ordered has a perfect elimina-
tion ordering, the minimum deficiency algorithm finds it. However, find-

11

12 CHAPTER 3. RELATED WORK

ing the deficiency of a node is expensive, so the algorithm is slower than
the minimum degree algorithm [41].

In 1973, George [18] introduced an algorithm to produce orderings for
regular finite element meshes, called nested dissection. This algorithm com-
putes a node separator, and then recursively orders the partitions before the
separator. George and Liu generalized the algorithm to work on arbitrary
graphs [21]. In practice, nested dissection is combined with algorithms such
as the minimum degree algorithm: once the subgraphs are small enough, they
are ordered by the minimum degree algorithm [5, 6, 29]. A similar approach
based on multisectors instead of bisectors is presented in [6].

In some variants of these algorithms, the notion of indistinguish-
able nodes is used to build a compressed graph, which speeds up the
computation of an ordering [4, 6, 26].

Node orderings from heuristic algorithms provide a basis to find min-
imal triangulations [25]. This, in turn, makes it possible to locally opti-
mize node orderings [9, 36]. While this does not guarantee that the re-
sulting orderings are minimum, the fill-in can be reduced significantly in
some cases [9]. Unlike a minimum triangulation, a minimal triangulation
can be found in polynomial time [25].

Node ordering algorithms also have applications in areas where
minimum triangulations are of interest, such as in Bayesian networks
[31] and computer vision [14].

For asymmetric matrices, reordering columns can lead to a reduced num-
ber of non-zeros in the matrix factors [15]. The minimum degree algorithm
for symmetric matrices is based on an algorithm proposed by Markowitz [34]
for computing the inverse of asymmetric matrices arising in linear program-
ming. A minimum node ordering for the symmetric matrix A>A can be used
as an ordering for the asymmetric matrix A, but algorithms that do not
rely on this product also exist, such as the column approximate minimum
degree algorithm introduced by Davis et al. [15].

3.2 The Minimum Degree Algorithm
The minimum degree algorithm (Algorithm 1) is a greedy algorithm to com-
pute a node ordering based on the degree of the nodes [22, 41]. At each
step of the algorithm the node with the smallest degree is eliminated from
the current elimination graph. Since the degree of a node corresponds to
the number of non-zeros in the corresponding matrix column, the degree of
an eliminated node gives an estimate of the operation count in the elimi-
nation step. Thus, the minimum degree algorithm minimizes the operation

3.2. THE MINIMUM DEGREE ALGORITHM 13

Algorithm 1: The minimum degree algorithm
input : An undirected graph G = (V,E)
output: An ordering σ

MinDegree(G)
1 i← 1

2 G(0) ← G
3 while i ≤ |V | do
4 x← argmina∈V degG(i−1)(a)

5 G(i) ← G
(i−1)
x

6 σ(i)← x

A

B

C

D E F

G

H

I

Figure 3.1: For this graph, the minimum degree ordering is not optimal. Eliminating in
alphabetic order would incur no fill-in, but the minimum degree algorithm eliminates E
first.

count of the factorization in each elimination step. It also tends to min-
imize the fill-in, since the degree of a node x also gives an upper bound
for the fill-in, with |D(x)| = O(deg(x)2).

However, orderings from the minimum degree algorithm are not generally
optimal. The graph in Figure 3.1 has a perfect elimination order, and thus,
zero fill-in. However, the minimum degree ordering has fill-in, since node E is
eliminated first. In fact, the fill-in of a minimum degree ordering can be arbi-
trarily greater than the minimum fill-in [41]. See Figure 3.2 for an example.

A straightforward implementation of the minimum degree algorithm
would explicitly construct the elimination graph in every iteration. Since
the fill-in can be arbitrarily greater than the minimum fill-in, such an
implementation could require far more memory than is required for the
input graph. The generalized element model [19, 22, 48] provides a
representation of elimination graphs that solves this problem. In this
model, graphs are represented by an edge clique cover. A trivial edge
clique cover of a graph G = (V,E) is the set E.

14 CHAPTER 3. RELATED WORK

C

a1 a2 · · · an

x

Figure 3.2: A graph for which the minimum degree ordering has fill-in arbitrarily greater
than the minimum fill-in, adapted from [41]. C is a clique with m ≥ n nodes. Each node
ai is adjacent to each node in C. The minimum degree algorithm eliminates x first, which
leads to a fill-in of n(n−1)

2 . An ordering where all nodes ai are eliminated first has fill-in
m.

Eliminating a node x changes the edge clique cover. Let {C1, . . . , Ck} be
the cliques that contain x. In the edge clique cover of the elimination graph
C1, . . . , Ck are replaced by the clique (

⋃k
i=1Ci) \ {x}.

Implementations based on this approach have the advantage that the
memory required to represent the elimination graphs never exceeds the
amount of memory required for the original graph.

There are several techniques to improve the running time of the mini-
mum degree algorithm [22]. They focus mostly on avoiding computing the
node degree in the elimination graph. Mass elimination and indistinguishable
nodes make it possible to eliminate multiple neighboring nodes at the same
time. Element absorption reduces the number of cliques being processed: If
there are cliques C1 and C2 in the edge clique cover where C1 ⊆ C2, then C1

can be discarded. With multiple elimination an independent set of minimum
degree nodes is eliminated instead of just a single node. Lastly, incomplete
degree update delays the update of the degree of dominating nodes.

3.3 Nested Dissection
Let G = (V,E) be an undirected graph. Nested dissection (Algorithm 2)
computes a node ordering of a graph G by first computing a separator S sepa-
rating V into subsets V1 and V2 and then recursively ordering G[V1], G[V2] and
G[S]. If the number of nodes in the graph is below some recursion limit, they
are ordered by some other algorithm, usually the minimum degree algorithm.

For square grids [18] and planar graphs [32] the number of non-
zeros introduced by a nested dissection ordering for a graph with n
nodes is bounded by O(n2 log2 n), where n is the number of variables

3.4. NODE SEPARATORS 15

Algorithm 2: Nested dissection
input : An undirected graph G = (V,E)
output: An ordering σ

NestedDissection(G)
1 if |G| ≥ recursion limit then
2 V1, V2, S ← Separator(G)
3 foreach G′ in (G[V1], G[V2], G[S]) do
4 σ′ ← NestedDissection(G′)
5 σ ← σσ′

6 else
7 σ ← MinDegree(G)

in the linear system. For square grids it can be shown that the tri-
angular factors have at least O(n2 log2 n) non-zeros [27]. However, no
such bound exists for general graphs [21].

On square grids finding the separator is straightforward. On planar
graphs it can be found in linear time [33]. In general, though, computing
the separator is the most time consuming step in nested dissection. Order-
ing a reduced version of the graph should improve the running time of the
algorithm, without degrading the quality of the ordering.

3.4 Node Separators
Multilevel algorithms are the most common approach to solving the node
separator problem on large graphs [10, 29, 44, 46]. These algorithms consist
of three phases. First, the input graph is transformed into a coarser graph.
After computing a separator on the coarse graph, the solution is transferred
back to the input graph and optimized locally.

In the coarsening phase edges are contracted. The edges to contract are
selected by computing a maximum weight matching. Nodes connected by an
edge in the matching are merged, and any parallel edges are replaced by a
single edge. This process is applied repeatedly, leading to coarser and coarser
graphs. To obtain a coarse graph that is representative of the input graph,
an edge rating function can be applied to guide the contraction.

Once the coarse graph is small enough, an initial separator is computed.
A common way is to use the boundary nodes of an edge separator with
partitions V1 and V2. The set of boundary nodes in V1 is a separator, so
is the set of boundary nodes in V2. In general, a vertex cover of the graph

16 CHAPTER 3. RELATED WORK

induced by the cut edges is a separator [39, 46]. This usually results in a
better separator than simply selecting the boundary nodes in V1 or V2.

When uncontracting the matchings, the node separators are re-
fined by local search at each step.

3.5 Reduction Rules
Reduction rules play an important role in algorithms for NP-hard problems.
They were originally used to reduce the running time of brute force algo-
rithms, e.g., for the maximum independent set problem [49].

Reductions are fundamental to algorithms for fixed parameter tractable
problems [1]. A problem is fixed parameter tractable with parameter k, if
it has an algorithm with running time O(f(k)nc), where n is the problem
size, c is some constant and f(k) is an arbitrary function. The vertex cover
problem is fixed parameter tractable, if stated as a decision problem: is
there a vertex cover with at most k nodes?

One approach to solve such problems is kernelization. Here, the graph
is reduced by reduction rules until a smaller graph is obtained. If this re-
duced graph is bounded by some function of the parameter, it is called a
kernel. Solving the problem on the kernel is equivalent to solving it on the
original graph. For the vertex cover, a kernel can be obtained by remov-
ing nodes x with deg(x) > k and their incident edges, because these nodes
are always in a vertex cover of size k [1, 11].

Branch-and-reduce methods offer another approach to NP-hard problems.
These algorithms reduce the problem instance using reduction rules, then
branch into multiple subinstances that are then solved recursively. Examples
for such methods include algorithms for the independent set problem [30, 51,
52], the vertex cover problem [2, 12] and the dominating set problem [28].

We already gave an example for a reduction rule for the vertex cover prob-
lem. A further example is the twin reduction used for maximum independent
sets [51] and minimum vertex covers [2]: in this context, twins are nodes a, b
with deg(a) = deg(b) = 3 and N(a) = N(b). Depending on N({a, b}), the
set {a, b} ∪N({a, b}) can either be removed or contracted. This is a special
case of the crown reduction for the vertex cover problem [13].

3.6. LABEL PROPAGATION 17

3.6 Label Propagation
Label propagation is an algorithm introduced by Raghavan et al. [40] to
detect clusters in graphs. Here, we only describe our implementation of
the algorithm, although other variations exist.

The algorithm begins by assigning a unique label to each node. Then,
the labels are updated repeatedly, until they no longer change. In each
step of the algorithm the nodes are updated in random order. Each node
is assigned the label that a maximum number of its neighbors share. Ties
are broken randomly. If a node’s label is already shared by a majority of
its neighbors, the label is not updated.

Label propagation allows for fast cluster detection. Each iteration
takes time O(m) for a graph with m edges and the algorithm typically
converges after a few iterations [40].

18 CHAPTER 3. RELATED WORK

Chapter 4

Reduced Nested Dissection

We now introduce our nested dissection algorithm with reductions, which we
call reduced nested dissection. The chapter is structured as follows. After
outlining the algorithm we describe our exact reduction rules in Section 4.1
and our inexact reduction rules in Section 4.2. Section 4.3 introduces our
node ordering algorithm based on graph clustering.

Algorithm 3: Reduced nested dissection
input : An undirected graph G = (V,E)
output: An ordering σ

ReducedNestedDissection(G)
1 G′ ← ReduceGraph(G)
2 if |G| ≥ recursion limit then
3 V1, V2, S ← Separator(G)
4 foreach G′ in (G[V1], G[V2], G[S]) do
5 σ′ ← ReducedNestedDissection(G′)
6 σ ← σσ′

7 else
8 σ ← MinDegree(G)

9 σ ← map ordering σ from G′ to G

Algorithm 3 outlines our algorithm. We extend nested dissection
by transforming the input graph G to a reduced graph G′ and then
continuing as in nested dissection. After an ordering has been found
it is mapped back to the original graph G.

If the transformation of the graph is fast relative to the computation of
the separator and the transformed graph G′ is significantly smaller than G,

19

20 CHAPTER 4. REDUCED NESTED DISSECTION

A

Figure 4.1: A is a simplicial node, since its neighborhood is a clique. The dashed edges
lead to some other nodes in the graph.

then reduced nested dissection should be faster than pure nested dissection.
In Sections 4.1 and 4.2 we introduce our reduction rules.

4.1 Exact Reductions
A reduction rule is a polynomial time transformation from a graph G to a
reduced graph G′, such that a minimum ordering of G′ can be extended to a
minimum ordering of G in polynomial time. For a minimum ordering of G′,
Σ(G′), there is a corresponding minimum ordering of G, Σ′(G).

4.1.1 Simplicial Nodes
Definition 4.1.1. A node x is simplicial if its neighborhood N(x) is a clique
(see Figure 4.1 for an example).

Theorem 4.1.2. No new edges are added during elimination of a simplicial
node x.

Proof. Since N(x) is a clique, D(x) = ∅. By definition of the elimination
graph (see Definition 2.2.2), no new edges are added when eliminating x.

Theorem 4.1.3. Let G = (V,E) be a graph with a simplicial node x. The
ordering xΣ(Gx) is a minimum fill-in ordering of G.

Proof. From Definition 4.1.1 it follows that D(x) = ∅. The fill-in associated
with eliminating x first is φ(G, xΣ(Gx)) = |D(x)| + Φ(Gx) = Φ(Gx). From
(2.2.5) it follows that φ(G, xΣ(Gx)) = Φ(G).

This allows us to eliminate all simplicial nodes first by the following proce-
dure:

4.1. EXACT REDUCTIONS 21

Indistinguishable Nodes

I1 I2

Twins

T1 T2

Figure 4.2: Examples for indistinguishable nodes and twins. Nodes I1 and I2 are indis-
tinguishable, since they are neighbors and connected to all unlabeled nodes by an edge,
i.e., N [I1] = N [I2]. Nodes T1 and T2 are twins, since they are both connected to all
unlabeled nodes, but not to each other. N(T1) = N(T2).

1. Find any simplicial node x in G = (V,E).

2. Eliminate x from G and place it next in the node ordering.

3. If the elimination graph Gx has simplicial nodes, repeat the procedure
for Gx.

If every elimination graph in the elimination sequence σ has at least
one simplicial node, then φ(G, σ) = 0. In this case, σ is a perfect
elimination ordering of G. Graphs that admit such an ordering are
called chordal or triangulated graphs [41, 42].

Reduction 1 (Simplicial Node Reduction). Given a graph G = (V,E) and a
simplicial node x ∈ V , construct a new graph G′ = G[V \{x}]. Φ(G) = Φ(G′)
and xΣ(G′) is a minimum fill-in ordering of G.

4.1.2 Indistinguishable Nodes
Definition 4.1.4. Two nodes a and b are indistinguishable if N [a] = N [b].

Figure 4.2 shows an example for indistinguishable nodes. We now show
that such nodes can be eliminated together: if a and b are indistinguishable
nodes, then there exists a minimum fill-in ordering x1 · · ·xiabxi+1 · · ·x`.

Lemma 4.1.5. If a, b are indistinguishable nodes in a graph G, then a and
b are indistinguishable in any elimination graph Gx for x /∈ {a, b}.

22 CHAPTER 4. REDUCED NESTED DISSECTION

Proof. Let x ∈ N(a)\{b} = N(b)\{a} be eliminated from G. In the elimina-
tion graph NGx(a) = (N(a)\{x})∪N(x) and NGx(b) = (N(b)\{x})∪N(x).
Since a ∈ NGx(b) and b ∈ NGx(a), NGx [a] = NGx [b]. Thus, a and b are
indistinguishable in Gx.

If a node x with x /∈ N(a) and x /∈ N(b) is eliminated from G, the
neighborhoods of a and b do not change, since a, b /∈ N(x). In the elimination
graph NGx [a] = NGx [b]. Thus, a and b are indistinguishable in Gx.

Lemma 4.1.6. Let a, b be indistinguishable nodes in a graph G = (V,E).
If aΣ(Ga) is a minimum ordering of G, then abΣ((Ga)b) is also minimum
ordering of G. φ(G, aΣ(Ga)) = φ(G, abΣ((Ga)b)) = Φ(G).

Proof. Since NG[a] = NG[b], NGa [b] = NG(a). Due to the elimination process,
NGa(b) is a clique. Thus, b is simplicial in Ga. With Theorem 4.1.3, bΣ((Ga)b)
is a minimum ordering of Ga. Thus, if aΣ(Ga) is a minimum ordering of G,
abΣ((Ga)b) is a also minimum ordering of G.

Theorem 4.1.7. Let G = (V,E) be a graph with a set of nodes A ⊆ V , where
∀ ai, aj ∈ A, N [ai] = N [aj]. There is an ordering σ′ = x1 · · ·xiAxi+1 · · · x`,
where V \ A = {x1, . . . , x`}, such that φ(G, σ′) = Φ(G).

Proof. Lemma 4.1.5 implies that all pairs of nodes in A are indistinguish-
able in all graphs in the elimination sequence. There is a graph G(m) in
the elimination sequence with a minimum ordering aΣ(G

(m)
a), a ∈ A. By

Lemma 4.1.6, a1 · · · akΣ(G(m)
A) is also a minimum ordering of G(m). In fact,

any AΣ(G
(m)
A) is a minimum ordering of G(m). Thus, G has a minimum

ordering of the form of σ′.

Theorem 4.1.7 implies that indistinguishable nodes can be treated as
one node: if a node is removed, all its indistinguishable nodes can be re-
moved next. To obtain a reduced graph G′, we contract a set of indis-
tinguishable nodes S in G to one node x.

Reduction 2 (Indistinguishable Node Reduction). Given a graph
G = (V,E) with indistinguishable nodes a, b ∈ V , construct a new graph
G′ = G(V \ {b}). Replacing a in Σ(G′) by ab results in a minimum ordering
of G.

Note, that in the reduced graph G′, the deficiency of any node neighbor-
ing a set of indistinguishable nodes is different from that of the correspond-
ing node in the original graph G. Thus, we have to optimize the ordering
in G′ not in terms of the deficiency of a node in G′, but in terms of the
deficiency of the corresponding node in G.

4.1. EXACT REDUCTIONS 23

Indistinguishable nodes are commonly used to speed up the minimum de-
gree algorithm [19, 20, 22]. In implementations of the minimum degree algo-
rithm based on the quotient graph model, indistinguishable nodes are repre-
sented by a single node, similar to Reduction 2. This reduction is also used in
other variants of nested dissection and the minimum degree algorithm [4, 26].

4.1.3 Twins
Definition 4.1.8. Two nodes a and b are twins if N(a) = N(b).

Figure 4.2 shows an example of twins. Similar to indistinguishable
nodes, twins can be eliminated together.

Theorem 4.1.9. Let a, b be twins in a graph G = (V,E). There ex-
ists an ordering σ′ = x1 · · ·xiabxi+1 · · · xl, with xj ∈ V \ {a, b}, such that
φ(G, σ′) = Φ(G).

Proof. If a node x ∈ N(a) = N(b), is eliminated, a and b form a clique in
the elimination graph Gx. Thus, a and b are indistinguishable in Gx and
Theorem 4.1.7 holds.

If a node x /∈ N(a) ∪ {a, b} is eliminated, the neighborhoods of nodes a
and b do not change, i.e., NGx [a] = NG[a] and NGx [b] = NG[b]. Thus, a and
b are twins in Gx.

If a is eliminated, NGa(b) is a clique in the elimination graph Ga and b is
simplicial in Ga. With Theorem 4.1.3, bΣ((Ga)b) is a minimum ordering of
Ga and abΣ((Ga)b) is a minimum ordering of G.

We can treat twins similarly to indistinguishable nodes: we obtain a
reduced graph by contracting twins. As with Reduction 2, the deficiency of
a node in G′ is different to the deficiency of the corresponding node in G.

Reduction 3 (Twin Reduction). Given a graph G = (V,E) with twins
a, b ∈ V , construct a new graph G′ = G[V \ {b}]. Replacing a in Σ(G′) by
ab results in a minimum ordering of G.

4.1.4 Path Compression
We now show that a path of nodes with degree 2 can be eliminated together.
More formally, let P = {a1, a2, . . . , ak} be a path in a graph G = (V,E)
with deg(ai) = 2 for all ai ∈ P . There is a minimum fill-in ordering
Σ = x1 · · ·xia1 · · · akxi+1 · · · x`, where V \ P = {x1, . . . , x`}.

24 CHAPTER 4. REDUCED NESTED DISSECTION

We prove this by distinguishing three cases based on which nodes are
separation cliques, and using the relationship between minimum triangula-
tions and minimum fill-in orderings. Corollary 1 and Proposition 2 from [41]
are central to our proof and we restate them here.

Lemma 4.1.10 (Corollary 1 from [41]). Let G = (V,E) be a graph with
separation clique S with components C1, C2, . . . , Ck. Any minimum triangu-
lation T of G contains only edges e = {x, y} ∈ T with x and y in the same
component Cj, or edges with e = {x, y} ∈ T with x ∈ Cj and y ∈ S.

Lemma 4.1.11 (Proposition 2 from [41]). Let C = (V,E) be a cycle with
|V | ≥ 3 nodes. Any ordering of C is a minimum fill-in ordering.

Furthermore, we need to show that nodes with degree 2 in induced cycles
of four or more nodes can be eliminated first.

Lemma 4.1.12. Let G = (V,E) be a graph with a node a ∈ V where
deg(a) = 2, N(a) /∈ E and {a} is not a separation clique. Then, aΣ(Ga) is
a minimum ordering of G.

To prove Lemma 4.1.12 we establish that there exists a minimum trian-
gulation that does not contain an edge to such a node a.

Lemma 4.1.13. Let G and a be as in Lemma 4.1.12. There exists a mini-
mum triangulation T̂ of G, with N(a) ∈ T̂ and {a, x} /∈ T̂ for all x ∈ V .

Proof. Let C = {C1, . . . , Cn} be the set of induced cycles that contain a, i.e.,
for all i, a ∈ Ci and G[Ci] is a cycle. Due to the assumptions on a, N(a) ⊂ Ci

for all i.
By Lemma 4.1.11, for all Ci ∈ C, there exists a minimum triangulation

Ti with N(a) ∈ Ti. Thus, there exists a minimum triangulation T̂ of G with
N(a) ∈ T̂ .

N(a) is a separation clique with components {a} and V \ ({a} ∪ N(a))
in the triangulated graph Ĝ = (V,E ∪ T̂). By Lemma 4.1.10 there exists no
edge {a, x} ∈ T̂ .

This implies N(a) ∈ T̂ , {a, x} /∈ T̂ and T̂ is minimum.

Proof of Lemma 4.1.12. With Lemma 4.1.13 there exists a minimum trian-
gulation T̂ of G with N(a) ∈ T̂ and {a, x} /∈ T̂ . a is simplicial in the
triangulated graph Ĝ = (V,E ∪ T̂) and aΣ(Ĝa) is a minimum ordering of Ĝ.
This implies that aΣ(Ga) is a minimum ordering of G. Note that eliminating
a from G adds the edge N(a) to the elimination graph.

With these results we can now prove our original statement.

4.1. EXACT REDUCTIONS 25

Case 1

a1

a0 a5

a4

a3a2 a3

a2

a1

a0

a5

a4

Case 2

a0 a1 a2 a3 a4

Case 3

a0

a1

a2 a3

a4

Figure 4.3: Examples for the three cases in the proof of Theorem 4.1.14. Thick nodes
are nodes in P . N(P) is marked with dashed rectangles. Dashed edges lead to some other
nodes in the graph.

26 CHAPTER 4. REDUCED NESTED DISSECTION

Theorem 4.1.14. Let G = (V,E) and P = {a1, . . . , ak} ⊆ V such that
G[P] is a path graph and ∀ a ∈ P deg(a) = 2. Let N(P) = {a0, ak+1} and
N(ai) = {ai−1, ai+1}, i = 1, . . . , k. There exists an ordering

σ′ = x1 · · ·xia1 · · · akxi+1 · · ·x`,

where V \ P = {x1, . . . , x`}, such that φ(G, σ′) = Φ(G).

Proof. G can be decomposed into non-disjoint graphs G′ := G[V \ P] and
G′′ := G[P ∪N(P)], such that

G = G′ ∪G′′. (4.1.1)

We distinguish three cases (see Figure 4.3 for examples):

Case 1: If a0 = ak+1 or a0 ∈ N(ak+1), then G′′ is a cycle and N(P) is a sepa-
ration clique with leaves G′ and G′′. Let T ′ be a minimum triangulation
of G′ and T ′′ be a minimum triangulation of G′′. By Lemma 4.1.10,
T ′ ∪ T ′′ is a minimum triangulation of G. Since any ordering of G′′

generates a minimum triangulation of G′′ (by Lemma 4.1.11), PΣ(G′′
P)

is a minimum ordering of G′′ and PΣ(GP) is a minimum ordering of
G.

Case 2: If a0 6= ak+1, and {a0} and {ak+1} are separation cliques, then all
nodes in P are also separation cliques. By Lemma 4.1.10, there are no
edges {ai, aj}, for all i 6= j in a minimum triangulation of G.
Let Σ be any minimum fill-in ordering of G and let G(m) be the graph
in the elimination sequence from which a ∈ P is eliminated. Node a
is simplicial in G(m), otherwise T (Σ) would not be a minimum trian-
gulation. Since all a ∈ P are separation cliques and deg(a) = 2 in G,
deg(a) = 1 in G(m).
Without loss of generality assume that a1 is eliminated before all other
nodes in P . Let G(m1) be the graph in the elimination sequence from
which a1 is eliminated. If deg(a1) = 1 in G(m1), then deg(a2) = 1 in
G

(m1)
a1 . Repeating this argument for all ai ∈ P proves that PΣ(G

(m1)
P)

is a minimum ordering of G(m1) and Σ is of the form of σ′.

Case 3: If {a0}, {ak+1} and N(P) are not separation cliques, then any a ∈ P
satisfies the conditions in Lemma 4.1.12. In Ga, {a0}, {ak+1} and N(P)
are not separation cliques. Repeating the argument for Ga leads to a
minimum ordering PΣ(GP).

4.2. INEXACT REDUCTIONS 27

In Case 1 and Case 3, there exists a minimum ordering a1 · · · akx1 · · ·x`.
In Case 2, there exists a minimum ordering x1 · · · xia1 · · · akxi+1 · · ·x`. Both
orderings are of the form of σ′.

Since such sets of nodes P can be eliminated together, we can contract
them to a single node. It is possible that in a minimum elimination sequence
of a graph G, the degree of a1 ∈ P becomes 1. Then, P has to be ordered
as a1a2 · · · ak to obtain a minimum ordering.

Reduction 4 (Path Compression). Given a graph G = (V,E) with a set
of nodes P = {a1, . . . , ak}, where G[P] is a path graph, N(P) = {a0, ak+1}
and ∀ a ∈ P deg(a) = 2, construct a new graph G′ = (V \ {a2, . . . , ak}, E ′),
where E ′ = (E \ E(P ∪ {ak+1})) ∪ {{a1, ak+1}}. Replacing a1 in Σ(G′) by
a1a2 · · · ak yields a minimum ordering of G.

4.2 Inexact Reductions
An inexact reduction rule is a transformation from a graph G to a reduced
graph G′, where minimum ordering of G′ is not guaranteed to correspond to
a minimum ordering of G. A minimum ordering of G′, Σ(G′), corresponds
to an ordering of G, σ′(G), where φ(G, σ′(G)) ≥ Φ(G).

While such reductions do not guarantee a minimum ordering, they
are useful in reducing the graph size and thus the running time of
the reduced nested dissection. In practice, they have little effect on
the quality of the node orderings.

4.2.1 Degree-2 Elimination
In a graph without simplicial nodes, the minimum degree is 2. These
nodes would be eliminated first by the minimum degree algorithm,
so we eliminate them from the graph.

Inexact Reduction 1 (Degree-2 Elimination). Given a graph G = (V,E)
and any node x with degree 2, construct the elimination graph Gx. The
potentially non-minimum ordering of G is xΣ(Gx). The reduction is applied
recursively until no nodes with degree 2 are left.

Just as with the minimum degree algorithm, degree-2 elimination can
lead to a non-minimum ordering (see Figure 4.4). In some cases, degree-2
elimination can lead to a worse ordering than the minimum degree algorithm.
Consider node D in Figure 4.4. When A, B and C are eliminated, D has

28 CHAPTER 4. REDUCED NESTED DISSECTION

A

B

C

D E F

G

H

I

Figure 4.4: Applying degree-2 elimination to this graph can lead to a non-minimum
ordering: the order [A,B,C,D,E, . . .] has lower fill-in than the order [E,A,B,C,D, . . .],
but both are possible orderings from degree-2 elimination.

degree one and D and E can be eliminated without fill-in. However, degree-2
elimination eliminates E before D, leading to a higher fill-in.

The proof of Theorem 4.1.14 has interesting implications on the
exactness of degree-2 elimination.

Corollary 4.2.1. Let G = (V,E) be a graph. If x ∈ V is part of any cycle
C ⊆ V and deg(x) = 2, xΣ(Gx) is a minimum ordering of G.

Proof. Node x is part of a cycle and thus not a separation clique. Either case
1 or 3 of Theorem 4.1.14 holds, which implies that xΣ(Gx) is a minimum
ordering of G.

Corollary 4.2.2. Let G = (V,E) be a graph. Let {x} ⊂ V be a separation
clique and deg(x) = 2. Let Σ be a minimum fill-in ordering and G(m) be the
graph in the corresponding elimination sequence from which x is eliminated.
x is simplicial in G(m).

Proof. Since x is a separation clique, Case 2 of Theorem 4.1.14 holds and
thus, x is simplicial in G(m).

Corollaries 4.2.1 and 4.2.2 imply that degree-2 elimination is exact when
degree-2 nodes that are part of a cycle are eliminated. In some graphs,
degree-2 elimination can therefore be exact.

If all nodes with degree 2 that are not separators can be de-
tected efficiently, we can introduce an exact reduction that only
eliminates nodes with degree 2.

4.2.2 Triangle Contraction
Theorem 4.2.3. Let G = (V,E) be a graph, where ∀ x ∈ V deg(x) ≥ 3. Let
a, b ∈ V be two neighboring nodes (i.e., {a, b} ∈ E), with deg(a) = deg(b) = 3

4.3. NODE ORDERING WITH GRAPH CLUSTERING 29

A B C D

Figure 4.5: Nodes A,B and C,D satisfy the condition in Theorem 4.2.3. If A is eliminated
in the minimum degree algorithm, deg(B) = 3 in the elimination graph, so B could be
eliminated next. However, if C is eliminated first, deg(B) = 4 in the elimination graph
and the condition does no longer hold for A and B.

and |N(a)∩N(b)| ≥ 1. Nodes a and b can be eliminated first by the minimum
degree algorithm.

Proof. Since all nodes in G have at least degree 3, a can be eliminated first
by the minimum degree algorithm. There are two cases:

Case 1: If |N(a) ∩ N(b)| = 1, then degGa
(b) = 3, so b can be eliminated

after a.

Case 2: If |N(a) ∩N(b)| = 2, then a and b are indistinguishable.

We can reduce the graph by contracting neighboring nodes of degree 3
if they share at least one neighbor. However, this only leads to a minimum
ordering if the degree of the nodes does not change during the elimination
process. If a node x ∈ N(a), x /∈ N(b) is eliminated before a or b and
deg(a) = 4 in the elimination graph, the ordering will no longer be minimum.

Inexact Reduction 2 (Triangle Contraction). Given a graph G = (V,E)
and nodes a, b with deg(a) = deg(b) = 3 and |N(a) ∩N(b)| = 1, construct a
new graph G′ = (V \ {a}, E \ (∪x∈N(a){a, x})∪x∈N(a) {x, b}). Replacing b by
ba in Σ(G′) yields a potentially non-minimum ordering of G.

4.3 Node Ordering with Graph Clustering
Our node ordering algorithm based on graph clustering is outlined in Al-
gorithm 4. We first cluster the input graph by label propagation. Then,

30 CHAPTER 4. REDUCED NESTED DISSECTION

Algorithm 4: Node Ordering with Graph Clustering
input : An undirected graph G = (V,E)
output: An ordering σ

ClusteredOrdering(G)
// Find clusters in the graph

1 C ← LabelPropagation(G)
// Order the contracted graph

2 G′ ← contract clusters C in G
3 σ′ ← ReducedNestedDissection(G′)

// Order the subgraphs
4 foreach cluster ci in C, in order determined by σ′ do
5 σ ← σ ReducedNestedDissection(G[ci])

we contract the clusters and order the resulting graph by reduced nested
dissection. Each cluster is also ordered individually by reduced nested dis-
section. The orderings of the clusters are then arranged in the order of the
contracted graph to yield the ordering of the input graph.

With this algorithm we aim to obtain orderings in shorter time than with
(reduced) nested dissection. Ordering the graph after contracting clusters
should be faster than ordering the uncontracted graph. The subgraphs in-
duced by the clusters will be relatively small and may often fall under the
recursion limit. Since the nodes in these clusters are highly connected, simpli-
cial node and indistinguishable node reduction should be very effective here.

This algorithm works under the following assumption: in a minimum
fill-in ordering we expect clusters to be ordered together, i.e., they would
form a block in the corresponding permuted matrix. Thus, we expect that
ordering clusters independently will lead to a good ordering. By ordering the
contracted graph we also take the connections between clusters into account.

Chapter 5

Experimental Evaluation

We now describe our experimental evaluation of our algorithms. Section 5.1
outlines our implementation of the reduced nested dissection algorithm. In
Section 5.2 we describe our test instances, method of evaluation and setup.
Section 5.3 discusses the results of our experiments.

5.1 Implementation Details
We implemented reduced nested dissection in C++ within version 2.10 of the
KaHIP graph partitioning framework [45].

Our implementation of the minimum degree algorithm is based on the
generalized element model, but does not make use of the running time im-
provements described in Section 3.2.

To apply simplicial node reduction (Reduction 1), we iterate through
nodes in order by non-decreasing degree. To test if node x is simplicial,
we iterate through the neighbors y ∈ N(x). If deg(y) < deg(x), x is not
simplicial. If |N(y) ∩N(x)| = deg(x)− 1, we move on to the next neighbor,
otherwise, x is not simplicial. When a node is found to be simplicial, we mark
it as removed and adjust the degrees of its neighbors accordingly. Removed
nodes are ignored when testing the other nodes. The order in which simplicial
nodes are found yields their elimination order.

Indistinguishable node and twin reductions (Reductions 2 and 3) are sim-
ilar in their implementation. To detect all indistinguishable nodes, we first
compute a hash of the closed neighborhood of each node xi as

hc(xi) =
∑

yj∈N [xi]

j. (5.1.1)

We then sort the hashes and iterate through the list. Whenever we find two
nodes x, y with equal hashes, we test if deg(x) = deg(y) and N [x] = N [y].

31

32 CHAPTER 5. EXPERIMENTAL EVALUATION

We use the same process to detect twins, but use the open neighborhood
instead of the closed neighborhood. The sets of twins and indistinguish-
able nodes are contracted. When mapping the ordering from the reduced
graph to the input graph, we simply replace the contracted node by the
corresponding set of twins or indistinguishable nodes.

For path compression (Reduction 4) we detect paths starting from
a node with degree 2 by recursively adding neighbors with degree 2.
These paths are contracted. When mapping the ordering from the
reduced graph to the input graph, we order the paths from the end
whose neighbor has been eliminated first.

To apply degree-2 elimination (Inexact Reduction 1), we first detect paths
as in path compression. We build the reduced graph by copying nodes that
are not eliminated. When adding the edges, we connect to the neighborhood
of a path instead of to the path itself. Parallel edges are merged into one.
The eliminated nodes are ordered arbitrarily.

We detect set of nodes A to be contracted in triangle contraction (In-
exact Reduction 2) by the following procedure:

1. Let x be some node with deg(x) = 3. Add x to A.

2. If x has a neighbor y with deg(y) = 3 and |N(x) ∩ N(y)| ≥ 1, add x
and y to A. Let a ∈ (N(x) ∩N(y)).

3. Let z ∈ N(y), z /∈ A. If deg(z) = 3 and a ∈ N(z), add z to A.
Otherwise, stop.

4. Repeat step 3 with the neighbors of z.

In the ordering of the input graph, nodes in A are ordered as they are added to
A.

When contracting nodes the degree of the nodes and their neigh-
bors change. To account for this, we do not use the node degree
in the minimum degree algorithm, but an adjusted degree based on
the node weights of the neighborhood:

degadj(x) =
∑

y∈N(x)

wy + (wx − 1) + cx, (5.1.2)

where wx is the weight of node x. A node with weight m represents m nodes
in the input graph. Thus, summing up the node weights of neighboring nodes
yields the size of the neighborhood in the original graph. wx − 1 counts the
edges to the indistinguishable neighbors of node x. When contracting twins,
counting these edges overestimates the degree, so we introduce a contraction

5.2. EXPERIMENTAL SETUP 33

Indistinguishable Nodes

AF

B

C

D

E

A

(1, 4)

F

(1, 1)

B

(1, 3)

CDE

(3, 4)

Twins

GL HI

J

K

G

(1, 4)

L

(1, 1)

H

(1, 3)

IJK

(3, 2)

Figure 5.1: Examples for the adjusted degree for indistinguishable nodes and twins.
Above: uncontracted graphs, below: contracted graphs. The nodes in the contracted
graphs are labeled with the node weight and the adjusted degree. Nodes C, D and E
are indistinguishable. Nodes I, J and K are twins. In the case of indistinguishable nodes
cCDE = 0 and degadj(CDE) = wA+wB+(wCDE−1)+cCDE = 1+1+(3−1)+0 = 4. In the
case of twins cIJK = −(wIJK − 1) and degadj(IJK) = wG+wH +(wIJK − 1)+ cIJK = 2.

offset cx. For a node x that represents indistinguishable nodes cx = 0. If x
represents a set of twins, then cx = −(wx − 1). Figure 5.1 gives an example
of the adjusted degree for indistinguishable nodes and twins.

5.2 Experimental Setup

We evaluate our algorithm on undirected graphs from [35]. These
graphs include social networks, citation networks and web graphs. Ta-
ble 5.1 lists their basic properties. We also use a subset of graphs from
Walshaw’s graph partitioning archive [47].

We evaluate our orderings with the gotst-program from the software
package Scotch (version 6.0.6) [38]. This program performs a Cholesky fac-
torization and reports the number of non-zeros in the matrix factors and
the operation count of the factorization. We compare our node orderings
against orderings from Metis (version 5.1.0) [29].

34 CHAPTER 5. EXPERIMENTAL EVALUATION

Graph Number of Nodes Number of Edges

amazon-2008 735 323 3 523 472
as-22july06 22 963 4 846
as-skitter 554 930 5 797 663
citationCiteseer 268 495 1 156 647
cnr-2000 325 557 2 738 969
coAuthorsCiteseer 227 320 814 134
coAuthorsDBLP 299 067 977 676
coPapersCiteseer 434 102 16 036 720
coPapersDBLP 540 486 15 245 729
email-EuAll 16 805 60 260
enron 69 244 254 449
eu-2005 862 664 16 138 468
in-2004 1 382 908 13 591 473
loc-brightkite_edges 56 739 212 945
loc-gowalla_edges 196 591 950 327
p2p-Gnutella04 6 405 29 215
PGPgiantcompo 10 680 24 316
soc-Slashdot0902 28 550 379 445
web-Google 356 648 2 093 324
wiki-Talk 232 314 1 458 806
wordassociation-2011 10 617 63 788

Table 5.1: Properties of the social networks from [35].

5.2. EXPERIMENTAL SETUP 35

Graph Number of Nodes Number of Edges

3elt 4 720 13 722
4elt 15 606 45 878
add20 2 395 7 462
add32 4 960 9 462
bcsstk29 13 992 302 748
bcsstk30 28 924 1 007 284
bcsstk31 35 588 572 914
bcsstk33 8 738 291 583
crack 10 240 30 380
cs4 22 499 43 858
cti 16 840 48 232
data 2 851 15 093
fe_4elt2 11 143 32 818
fe_pwt 36 519 144 794
fe_sphere 16 386 49 152
memplus 17 758 54 196
uk 4 824 6 837
vibrobox 12 328 165 250
whitaker3 9 800 28 989
wing_nodal 10 937 75 488

Table 5.2: Properties of the graphs from Walshaw’s benchmarking archive [47].

36 CHAPTER 5. EXPERIMENTAL EVALUATION

Reduction Abbreviation

Simplicial Node Reduction 0
Indistinguishable Node Reduction 1
Twin Reduction 2
Path Compression 3
Degree-2 Elimination 4
Triangle Contraction 5

Table 5.3: Reductions and their abbreviations in this text.

We compiled our implementation with version 6.3.0 of g++, with
the optimization level set to -O3.

All running times we report were measured on a machine with two In-
tel Xeon E7-8867 v3 processors (16 cores, 2.5 GHz) and 1000 GB RAM.
We run our code sequentially on a single core.

5.3 Experimental Results
Here, we describe the results of our experiments. First, we evaluate the effect
of reductions on the quality of nested dissection orderings and on the running
time of nested dissection. In Sections 5.3.2 and 5.3.3 we study how the choice
of recursion limit and imbalance influences quality and running time.

In all these experiments we apply the reductions once in the chosen order
on each recursion level. The reduced graph we obtain in this way may be fur-
ther reduced by repeating the reductions. We can apply them exhaustively,
i.e., until the graph can no longer be reduced. In Section 5.3.4 we evaluate
how exhaustive application of reductions affects the quality of the orderings.

Lastly, in Section 5.3.5 we present the results from our cluster-
ing based node ordering algorithm.

Unless otherwise noted, we use the ecosocial preconfiguration of KaHIP
to compute node separators, with the imbalance set to 20%. The default
recursion limit is set to 120 nodes, which is also the default in Metis.

Our implementation reads the order of reductions as a list of num-
bers. In this section, we use the same notation. To give an example,
0 3 4 would refer to an order of reductions where simplicial node re-
duction is applied first, followed by path compression and degree-2
elimination. See Table 5.3 for reference.

5.3. EXPERIMENTAL RESULTS 37

5.3.1 Combinations of Reductions
Here, we compare reduced nested dissection with nested dissection without
reductions in terms of the quality of its orderings and in terms of its running
time. For each of the graphs listed in Table 5.1 we ran reduced nested
dissection with different combination of reductions, as listed below. We also
compare our results against orderings obtained from Metis.

We use the following combinations:

01: Simplicial node and indistinguishable node reduction.

012: Simplicial node, indistinguishable node and twin reduction.

03: Simplicial node reduction and path compression.

04: Simplicial node reduction and degree-2 elimination.

045: Simplicial node reduction, degree-2 elimination and triangle contrac-
tion. Note that triangle contraction requires degree-2 elimination.

01234: All reductions except triangle contraction. Note that combining
path compression and degree-2 elimination in this way is not neces-
sarily useful, since the compressed paths are eliminated by degree-2
elimination.

01235: All reductions except degree-2 elimination. Note that this com-
bination is not expected to perform well, since triangle contraction
requires degree-2 elimination.

01245: All reductions except path compression.

01345: All reductions except twin reduction.

02345: All reductions except indistinguishable node reduction.

0123: Only exact reductions.

There are two reasons for always starting with simplicial node reduction:
first, simplicial node reduction finds a perfect elimination order if a graph is
triangulated. Second, some of the reductions only work if simplicial nodes
are removed (see Sections 4.2.1 and 4.2.2). Degree-2 elimination assumes
that there are no nodes of degree 1, which are removed by simplicial node
reduction. Triangle contraction can only be applied in combination with
degree-2 elimination, and thus also requires simplicial node reduction.

38 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.2 (on Page 40) shows the improvement in the number of non-
zeros over nested dissection. In terms of the median, the combination 0 4 5,
0 1 2 and 0 1 2 4 5 lead to the best results, with an improvement of ∼ 2.5%.
The combination 0 1 2 3 5 leads to worse results than nested dissection with-
out reductions, as expected. In terms of operation count, the combina-
tion 0 3 performs best, with a median improvement close to 5% (see Fig-
ure 5.3). It appears that in general the reductions influence the operation
count more than the number of non-zeros.

These results are summarized in Table 5.4. It should be noted that ex-
act reductions do not guarantee node orderings with lower number of non-
zeros or operation count. Since both nested dissection and the minimum
degree algorithm are heuristics, this is not unexpected. The minimum de-
gree algorithm in particular is very sensitive to the initial order of the matrix
[22], which a reduction can change significantly.

Figure 5.4 shows the improvement in running time over nested dis-
section without reductions. All reduction orders improve the running
time of nested dissection. In only nine cases is reduced nested dissection
slower than nested dissection. The largest improvement is gained for
the graph coPapersCiteseer and the reduction combination 0 1 3 4 5
with 95.6%. For this graph, nested dissection without reductions takes
17 175 seconds; reduced nested dissection takes 751.4 seconds. For the
combination 0 4 5 the running time is improved by 36.4% in the median.
For the combination 0 1 2 it is improved by 44%.

Table 5.5 lists the graph sizes after application of reduction rules be-
fore any separators are computed. Simplicial node reduction has by far the
greatest impact, on average reducing the graph to 57% of its original size.
Degree-2 elimination, twin reduction and indistinguishable node reduction
reduce the graph size by an additional 6%–13%. Path compression and tri-
angle contraction only lead to small reductions. Overall, the graphs are
reduced to approximately half their original size. Table 5.6 shows the aver-
age reduction in graph size over all applications of the reduction rules. Path
compression and triangle contraction contribute more to reducing the graphs
in later stages of the algorithm. Simplicial node reduction and degree-2
elimination reduce the graphs the most.

On the social networks, our implementation of nested dissection performs
slightly better than Metis. In the median, the number of non-zeros for Metis
is 1.56% greater than for our nested dissection without reductions (see Ta-
ble 5.4). The operation count is even 5.08% greater. For further comparison,
we applied reduced nested dissection to the graphs in Table 5.2. Here, we
used the eco preconfiguration for computing node separators. Table 5.7 re-
ports the number of non-zeros and operation count for reduction orders 0 1 2

5.3. EXPERIMENTAL RESULTS 39

and 0 4 5. For eleven graphs, at least one reduction order yields a lower
number of non-zeros. In terms of operation count, reduced nested dissection
performs better for thirteen graphs. Three graphs stand out: add20, add32
and memplus. add20 and memplus are chordal graphs and are reduced com-
pletely by simplicial node reduction. For these graphs, we obtain a perfect
elimination order. add32 is reduced to 0.8% of its original size by simplicial
node reduction, which improves the quality of the ordering.

40 CHAPTER 5. EXPERIMENTAL EVALUATION

0 1

0 1 2

0 3

0 4

0 4 5

0 1 2 3 4

0 1 2 3 5

0 1 2 4 5

0 1 3 4 5

0 2 3 4 5

0 1 2 3

Metis

0 40 80

number of non-zeros relative to no reductions, in percent

re
du

ct
io

ns

0 1

0 1 2

0 3

0 4

0 4 5

0 1 2 3 4

0 1 2 3 5

0 1 2 4 5

0 1 3 4 5

0 2 3 4 5

0 1 2 3

Metis

-1
0 -5 0 5 10 15

number of non-zeros relative to no reductions, in percent

re
du

ct
io

ns

Figure 5.2: Number of non-zeros for different reduction combinations, relative to the
number of non-zeros for nested dissection without reductions. The boxes extend from the
first to the third quartile, the bar represents the median. Above: all points, below: zoomed
plot. Combination 0 2 3 4 5 and 0 1 2 3 5 lead to more non-zeros in the median than nested
dissection without reductions. All other combinations reduce the number of non-zeros.

5.3. EXPERIMENTAL RESULTS 41

0 1

0 1 2

0 3

0 4

0 4 5

0 1 2 3 4

0 1 2 3 5

0 1 2 4 5

0 1 3 4 5

0 2 3 4 5

0 1 2 3

Metis

0 10
0

20
0

operation count relative to no reductions, in percent

re
du

ct
io

ns

0 1

0 1 2

0 3

0 4

0 4 5

0 1 2 3 4

0 1 2 3 5

0 1 2 4 5

0 1 3 4 5

0 2 3 4 5

0 1 2 3

Metis

-1
0 0 10 20

operation count relative to no reductions, in percent

re
du

ct
io

ns

Figure 5.3: Operation count for different reduction combinations, relative to the oper-
ation count of nested dissection without reductions. The boxes extend from the first to
the third quartile, the bar represents the median. Above: all points, below: zoomed plot.
Only combination 0 1 2 3 5 leads to a higher operation count in the median than nested
dissection without reductions.

42 CHAPTER 5. EXPERIMENTAL EVALUATION

0 1

0 1 2

0 3

0 4

0 4 5

0 1 2 3 4

0 1 2 3 5

0 1 2 4 5

0 1 3 4 5

0 2 3 4 5

0 1 2 3

-1
00 -7
5

-5
0

-2
5 0 25

running time relative to no reductions, in percent

re
du

ct
io

ns

Figure 5.4: Running time for different reduction combinations, relative to the running
time of nested dissection without reductions. The boxes extend from the first to the
third quartile, the bar represents the median. With all combinations, reduced nested
dissection is faster than nested dissection without reductions, except for some graphs.
The combination 0 4 yields the best improvement in terms of median.

5.3. EXPERIMENTAL RESULTS 43

N
um

be
r

of
N

on
-Z

er
os

O
pe

ra
tio

n
C

ou
nt

A
lg

or
ith

m
M

ea
n

St
d.

D
ev

.
Q

1
M

ed
ia

n
Q

3
M

ea
n

St
d.

D
ev

.
Q

1
M

ed
ia

n
Q

3

0
1

-2
.3

4
6.

24
-7

.1
6

-0
.9

1
0.

66
-1

.1
2

16
.9

8
-1

1.
23

-1
.4

1
3.

94
0
1
2

-1
.6

6
7.

61
-5

.6
5

-2
.5

2
1.

09
-0

.4
7

16
.6

2
-8

.3
8

-4
.1

8
8.

50
0
3

-0
.7

4
12

.3
6

-5
.0

8
-2

.1
2

0.
89

2.
74

33
.0

4
-9

.5
9

-4
.6

6
3.

92
0
4

-2
.9

0
9.

01
-5

.6
4

-1
.8

9
0.

67
-3

.1
9

16
.6

8
-1

1.
09

-2
.7

0
4.

88
0
4
5

-4
.0

7
7.

52
-7

.2
7

-2
.4

8
-0

.4
8

-5
.1

5
16

.0
2

-1
2.

92
-3

.8
3

2.
31

0
1
2
3
4

1.
60

15
.4

4
-5

.4
2

-1
.5

0
5.

37
3.

98
29

.4
6

-9
.7

5
-1

.7
7

9.
00

0
1
2
3
5

5.
52

16
.9

8
-4

.9
0

1.
30

6.
65

15
.3

5
44

.7
2

-8
.2

1
0.

88
11

.4
3

0
1
2
4
5

-1
.4

8
9.

47
-4

.2
5

-2
.5

1
2.

57
2.

90
26

.5
7

-9
.6

2
-0

.6
2

4.
17

0
1
3
4
5

4.
35

24
.5

5
-5

.0
5

-0
.7

0
3.

41
9.

91
50

.2
3

-7
.4

5
-2

.5
0

8.
96

0
2
3
4
5

-0
.6

8
10

.1
0

-6
.9

0
0.

65
6.

21
2.

66
25

.0
5

-1
3.

90
-0

.0
8

9.
80

0
1
2
3

5.
41

17
.9

8
-3

.1
3

-0
.9

4
13

.8
8

13
.4

0
37

.7
1

-6
.5

1
-0

.7
5

17
.9

5
M

et
is

4.
54

18
.5

8
-4

.9
7

1.
56

4.
63

13
.8

2
38

.4
5

-5
.8

6
5.

08
40

.2
9

Ta
bl

e
5.

4:
M

ea
n,

st
an

da
rd

de
vi

at
io

n
(S

td
.

D
ev

.),
fir

st
an

d
th

ird
qu

ar
til

e
(Q

1,
Q

3)
an

d
m

ed
ia

n
of

th
e

im
pr

ov
em

en
t

ov
er

ou
r

im
pl

e-
m

en
ta

tio
n

of
ne

st
ed

di
ss

ec
tio

n
w

ith
ou

t
re

du
ct

io
ns

fo
r

th
e

gr
ap

hs
in

Ta
bl

e
5.

1.
T

he
nu

m
be

r
se

qu
en

ce
s

in
th

e
fir

st
co

lu
m

n
re

fe
r

to
th

e
re

du
ct

io
n

co
m

bi
na

tio
ns

.
Sm

al
le

r
nu

m
be

rs
ar

e
be

tt
er

fo
r

th
e

m
ea

n
an

d
th

e
qu

ar
til

es
.

T
he

be
st

va
lu

es
in

ea
ch

co
lu

m
n

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

44 CHAPTER 5. EXPERIMENTAL EVALUATION

Combination 0 1 2 3 4 5 Total

0 1 2 3 57 94 92 99 50
0 2 3 4 5 57 93 99 90 99 48
0 1 3 4 5 57 94 99 88 99 47
0 1 2 4 5 57 94 92 89 99 45
0 1 2 3 5 57 94 92 99 99 49
0 1 2 3 4 57 94 92 99 90 45
0 4 5 57 87 99 51
0 4 57 87 51
0 3 57 99 57
0 1 2 57 94 92 50
0 1 57 94 54

Table 5.5: Impact of the reductions on the graph size on the first level of recursion for
each combination, averaged over the graphs. All values in percent. For each reduction,
we list the size of the reduced graph relative to the output of the previous reduction. The
last column lists the size of the fully reduced graph relative to the input graph.

Combination 0 1 2 3 4 5

0 1 2 3 63 94 98 94
0 2 3 4 5 65 98 96 91 97
0 1 3 4 5 66 99 95 91 97
0 1 2 4 5 66 94 98 87 97
0 1 2 3 5 64 94 98 94 98
0 1 2 3 4 66 94 98 96 90
0 4 5 65 88 96
0 4 65 88
0 3 63 94
0 1 2 62 94 98
0 1 62 94

Table 5.6: Avergae impact of the reductions on the graph size over all recursion levels,
averaged over the graphs. All values in percent. Every time we apply a reduction we
compute the relative graph size before and after the application. Here, we list the average
of these relative graph sizes over the full execution of the algorithm.

5.3. EXPERIMENTAL RESULTS 45
N

um
be

r
of

N
on

-Z
er

os
O

pe
ra

tio
n

C
ou

nt
G

ra
ph

0
1
2

0
4
5

M
et

is
0
1
2

0
4
5

M
et

is

3e
lt

9.
19
×

10
4

9.
32
×

10
4

8.
93
×

10
4

2.
78
×

10
6

2.
88
×

10
6

2.
60
×

10
6

4e
lt

3.
53
×

10
5

3.
51
×

10
5

3.
47
×

10
5

1.
37
×

10
7

1.
35
×

10
7

1.
33
×

10
7

ad
d2

0
9.

86
×

10
3

9.
86
×

10
3

1.
10
×

10
4

7.
86
×

10
4

7.
86
×

10
4

1.
07
×

10
5

ad
d3

2
1.

44
×

10
4

1.
44
×

10
4

1.
51
×

10
4

4.
34
×

10
4

4.
34
×

10
4

4.
90
×

10
4

bc
ss

tk
29

1.
65
×

10
6

1.
64
×

10
6

1.
64
×

10
6

3.
36
×

10
8

3.
31
×

10
8

3.
21
×

10
8

bc
ss

tk
30

4.
43
×

10
6

4.
15
×

10
6

4.
35
×

10
6

1.
16
×

10
9

1.
01
×

10
9

1.
11
×

10
9

bc
ss

tk
31

4.
20
×

10
6

4.
17
×

10
6

4.
31
×

10
6

1.
06
×

10
9

1.
05
×

10
9

1.
13
×

10
9

bc
ss

tk
33

2.
19
×

10
6

2.
10
×

10
6

2.
16
×

10
6

8.
00
×

10
8

7.
35
×

10
8

7.
70
×

10
8

cr
ac

k
1.

71
×

10
5

1.
72
×

10
5

1.
72
×

10
5

6.
40
×

10
6

6.
59
×

10
6

6.
96
×

10
6

cs
4

1.
35
×

10
6

1.
37
×

10
6

1.
38
×

10
6

3.
55
×

10
8

3.
57
×

10
8

3.
74
×

10
8

ct
i

1.
48
×

10
6

1.
45
×

10
6

1.
61
×

10
6

4.
07
×

10
8

4.
01
×

10
8

4.
92
×

10
8

da
ta

8.
20
×

10
4

8.
50
×

10
4

8.
29
×

10
4

3.
82
×

10
6

4.
21
×

10
6

3.
96
×

10
6

fe
_4

el
t2

2.
61
×

10
5

2.
59
×

10
5

2.
57
×

10
5

1.
18
×

10
7

1.
13
×

10
7

1.
16
×

10
7

fe
_p

wt
1.

38
×

10
6

1.
38
×

10
6

1.
35
×

10
6

1.
07
×

10
8

1.
06
×

10
8

1.
04
×

10
8

fe
_s

ph
er

e
6.

26
×

10
5

6.
28
×

10
5

6.
22
×

10
5

6.
31
×

10
7

6.
33
×

10
7

6.
49
×

10
7

me
mp

lu
s

7.
20
×

10
4

7.
20
×

10
4

7.
83
×

10
4

8.
17
×

10
5

8.
17
×

10
5

1.
63
×

10
6

uk
3.

57
×

10
4

3.
74
×

10
4

3.
48
×

10
4

4.
56
×

10
5

5.
03
×

10
5

4.
36
×

10
5

vi
br

ob
ox

2.
00
×

10
6

2.
00
×

10
6

2.
11
×

10
6

8.
25
×

10
8

8.
55
×

10
8

9.
32
×

10
8

wh
it

ak
er

3
2.

62
×

10
5

2.
63
×

10
5

2.
58
×

10
5

1.
37
×

10
7

1.
38
×

10
7

1.
36
×

10
7

wi
ng

_n
od

al
1.

76
×

10
6

1.
73
×

10
6

1.
70
×

10
6

6.
02
×

10
8

5.
62
×

10
8

5.
51
×

10
8

Ta
bl

e
5.

7:
N

um
be

r
of

no
n-

ze
ro

s
an

d
op

er
at

io
n

co
un

t
fo

r
th

e
gr

ap
hs

fr
om

Ta
bl

e
5.

2.
W

e
co

m
pa

re
re

du
ce

d
ne

st
ed

di
ss

ec
tio

n
w

ith
re

du
ct

io
n

or
de

rs
0
1
2

an
d
0
4
5

w
ith

re
su

lts
fr

om
M

et
is.

Lo
w

es
t

va
lu

es
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

46 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.2 Effect of the Recursion Limit on Running
Time and Quality

To study how the recursion limit influences the quality of the node order-
ings and the running time of reduced nested dissection, we ordered the
graphs in Table 5.1 using reduction orders 0 4 5 and 0 1 2 and varied the
recursion limit from 50 to 2000 nodes in steps of 50 nodes. We chose
these reduction orders because they perform best (see Section 5.3.1) and
because they use different sets of reductions. For this experiment we omit-
ted five graphs because of their large running times up to five hours. This
should not affect the results of this study.

As Figures 5.5 and 5.6 show, the number of non-zeros and operation count
do not change with the recursion limit in most cases. Where they change,
there is no clear trend. For the graphs amazon-2008 and web-Google the
effect of the recursion limit appears to be random.

The effect of the recursion limit on the running time of reduced
nested dissection is clearer (see Figure 5.7). With increased recursion
limit, the running time decreases. With a lower recursion limit, more
separators need to be computed. With a higher recursion limit, these
computations are replaced by a single application of the minimum degree
algorithm, which is most likely significantly faster.

While increasing the recursion limit may improve the running time of
nested dissection, at some point this will cancel out the advantages of nested
dissection over the minimum degree algorithm. Nested dissection orderings
are usually more suitable for parallel factorization than minimum degree
orderings [24]. This should be taken into account when choosing the re-
cursion limit: a lower recursion limit might be advantageous, even though
computing the node ordering will take more time.

5.3. EXPERIMENTAL RESULTS 47

so
c-

Sl
as

hd
ot

09
02

we
b-

Go
og

le
wi

ki
-T

al
k

wo
rd

as
so

cia
tio

n-
20

11

lo
c-

br
ig

ht
ki

te
_e

dg
es

lo
c-

go
wa

lla
_e

dg
es

p2
p-

Gn
ut

ell
a0

4
PG

Pg
ia

nt
co

m
po

co
Au

th
or

sD
BL

P
co

Pa
pe

rs
Ci

te
se

er
em

ai
l-E

uA
ll

en
ro

n

am
az

on
-2

00
8

as
-2

2j
ul

y0
6

cit
at

io
nC

ite
se

er
co

Au
th

or
sC

ite
se

er

0
50

0
10

00
15

00
20

00
0

50
0

10
00

15
00

20
00

0
50

0
10

00
15

00
20

00
0

50
0

10
00

15
00

20
00

0.
85

0.
90

0.
95

1.
00

0.
85

0.
90

0.
95

1.
00

0.
85

0.
90

0.
95

1.
00

0.
85

0.
90

0.
95

1.
00

re
cu

rs
io

n
lim

it

numberofnon-zeros,normalized

re
du

ct
io

ns
0

1
2

0
4

5

Fi
gu

re
5.

5:
C

ha
ng

e
in

nu
m

be
r

of
no

n-
ze

ro
s

w
ith

th
e

re
cu

rs
io

n
lim

it.
Fo

r
ea

ch
gr

ap
h,

th
e

nu
m

be
r

of
no

n-
ze

ro
s

is
no

rm
al

iz
ed

by
th

e
m

ax
im

um
va

lu
e.

R
ed

uc
tio

ns
ar

e
ab

br
ev

ia
te

d
as

in
Ta

bl
e

5.
3.

Fo
r

m
os

t
of

th
e

gr
ap

hs
in

cr
ea

sin
g

th
e

re
cu

rs
io

n
lim

it
ha

s
no

eff
ec

t
on

th
e

nu
m

be
r

of
no

n-
ze

ro
s.

O
nl

y
em

ai
l-

Eu
Al

l
an

d
PG

Pg
ia

nt
co

mp
o

be
ne

fit
cl

ea
rly

fr
om

a
hi

gh
er

lim
it.

48 CHAPTER 5. EXPERIMENTAL EVALUATION

so
c-

Sl
as

hd
ot

09
02

we
b-

Go
og

le
wi

ki
-T

al
k

wo
rd

as
so

cia
tio

n-
20

11

lo
c-

br
ig

ht
ki

te
_e

dg
es

lo
c-

go
wa

lla
_e

dg
es

p2
p-

Gn
ut

ell
a0

4
PG

Pg
ia

nt
co

m
po

co
Au

th
or

sD
BL

P
co

Pa
pe

rs
Ci

te
se

er
em

ai
l-E

uA
ll

en
ro

n

am
az

on
-2

00
8

as
-2

2j
ul

y0
6

cit
at

io
nC

ite
se

er
co

Au
th

or
sC

ite
se

er

0
50

0
10

00
15

00
20

00
0

50
0

10
00

15
00

20
00

0
50

0
10

00
15

00
20

00
0

50
0

10
00

15
00

20
00

0.
7

0.
8

0.
9

1.
0

0.
7

0.
8

0.
9

1.
0

0.
7

0.
8

0.
9

1.
0

0.
7

0.
8

0.
9

1.
0

re
cu

rs
io

n
lim

it

operationcount,normalized

re
du

ct
io

ns
0

1
2

0
4

5

Fi
gu

re
5.

6:
C

ha
ng

e
in

op
er

at
io

n
co

un
t

of
th

e
C

ho
le

sk
y

fa
ct

or
iz

at
io

n
w

ith
th

e
re

cu
rs

io
n

lim
it.

Fo
r

ea
ch

gr
ap

h,
th

e
op

er
at

io
n

co
un

t
is

no
rm

al
iz

ed
by

th
e

m
ax

im
um

va
lu

e.
R

ed
uc

tio
ns

ar
e

ab
br

ev
ia

te
d

as
in

Ta
bl

e
5.

3.
A

s
w

ith
th

e
nu

m
be

r
of

no
n-

ze
ro

s
(s

ee
Fi

gu
re

5.
5)

,t
he

re
cu

rs
io

n
lim

it
ha

s
no

eff
ec

t
on

th
e

op
er

at
io

n
co

un
t

fo
r

m
os

t
gr

ap
hs

.

5.3. EXPERIMENTAL RESULTS 49

so
c-

Sl
as

hd
ot

09
02

we
b-

Go
og

le
wi

ki
-T

al
k

wo
rd

as
so

cia
tio

n-
20

11

lo
c-

br
ig

ht
ki

te
_e

dg
es

lo
c-

go
wa

lla
_e

dg
es

p2
p-

Gn
ut

ell
a0

4
PG

Pg
ia

nt
co

m
po

co
Au

th
or

sD
BL

P
co

Pa
pe

rs
Ci

te
se

er
em

ai
l-E

uA
ll

en
ro

n

am
az

on
-2

00
8

as
-2

2j
ul

y0
6

cit
at

io
nC

ite
se

er
co

Au
th

or
sC

ite
se

er

0
50

0
10

00
15

00
20

00
0

50
0

10
00

15
00

20
00

0
50

0
10

00
15

00
20

00
0

50
0

10
00

15
00

20
00

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

re
cu

rs
io

n
lim

it

runningtime,normalized

re
du

ct
io

ns
0

1
2

0
4

5

Fi
gu

re
5.

7:
C

ha
ng

e
in

ru
nn

in
g

tim
e

of
re

du
ce

d
ne

st
ed

di
ss

ec
tio

n
w

ith
th

e
re

cu
rs

io
n

lim
it.

Fo
re

ac
h

gr
ap

h,
th

e
ru

nn
in

g
tim

e
is

no
rm

al
iz

ed
by

th
e

m
ax

im
um

va
lu

e.
R

ed
uc

tio
ns

ar
e

ab
br

ev
ia

te
d

as
in

Ta
bl

e
5.

3.
Fo

rm
os

to
ft

he
gr

ap
hs

th
e

ru
nn

in
g

tim
e

de
cr

ea
se

sw
he

n
th

e
re

cu
rs

io
n

lim
it

in
cr

ea
se

s.

50 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.3 Effect of the Imbalance Constraint on Run-
ning Time and Quality

To study the influence of the node separator imbalance on the quality of the
orderings and the running time of reduced nested dissection, we ordered the
graphs in Table 5.1 using reduction orders 0 4 5 and 0 1 2, as in Section 5.3.2.
Here, we used the default recursion limit and varied the imbalance parameter
ε from 5% to 50% in steps of 5%. Again, we omitted the same graphs.

Figures 5.8 to 5.10 show the change in number of non-zeros, operation
count and running time, respectively, with increasing imbalance. Number
of non-zeros and operation count both increase with the imbalance. This is
unexpected, since a larger imbalance should lead to smaller separators and
thus improve the node orderings. For most graphs, increasing the imbalance
also leads to increased running time. With increased imbalance, the recursion
also becomes more imbalanced and thus deeper. In the worst case, without
balance constraint, one of the components of the separator is almost the
same size as the input graph. Then, the recursion depth is on the order
of the number of nodes in the input graph.

Since imbalance increases the running time, the number of non-zeros and
the operation count, a lower imbalance is preferred.

5.3. EXPERIMENTAL RESULTS 51

so
c-

Sl
as

hd
ot

09
02

we
b-

Go
og

le
wi

ki
-T

al
k

wo
rd

as
so

cia
tio

n-
20

11

lo
c-

br
ig

ht
ki

te
_e

dg
es

lo
c-

go
wa

lla
_e

dg
es

p2
p-

Gn
ut

ell
a0

4
PG

Pg
ia

nt
co

m
po

co
Au

th
or

sD
BL

P
co

Pa
pe

rs
Ci

te
se

er
em

ai
l-E

uA
ll

en
ro

n

am
az

on
-2

00
8

as
-2

2j
ul

y0
6

cit
at

io
nC

ite
se

er
co

Au
th

or
sC

ite
se

er

10
20

30
40

50
10

20
30

40
50

10
20

30
40

50
10

20
30

40
50

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

im
ba

la
nc

e/
pe

rc
en

t

numberofnon-zeros,normalized

re
du

ct
io

ns
0

1
2

0
4

5

Fi
gu

re
5.

8:
C

ha
ng

e
in

nu
m

be
ro

fn
on

-z
er

os
w

ith
th

e
im

ba
la

nc
e.

Fo
re

ac
h

gr
ap

h,
th

e
nu

m
be

ro
fn

on
-z

er
os

is
no

rm
al

iz
ed

by
th

e
m

ax
im

um
va

lu
e.

R
ed

uc
tio

ns
ar

e
ab

br
ev

ia
te

d
as

in
Ta

bl
e

5.
3.

In
cr

ea
sin

g
th

e
im

ba
la

nc
e

in
cr

ea
se

s
th

e
nu

m
be

r
of

no
n-

ze
ro

s.

52 CHAPTER 5. EXPERIMENTAL EVALUATION

so
c-

Sl
as

hd
ot

09
02

we
b-

Go
og

le
wi

ki
-T

al
k

wo
rd

as
so

cia
tio

n-
20

11

lo
c-

br
ig

ht
ki

te
_e

dg
es

lo
c-

go
wa

lla
_e

dg
es

p2
p-

Gn
ut

ell
a0

4
PG

Pg
ia

nt
co

m
po

co
Au

th
or

sD
BL

P
co

Pa
pe

rs
Ci

te
se

er
em

ai
l-E

uA
ll

en
ro

n

am
az

on
-2

00
8

as
-2

2j
ul

y0
6

cit
at

io
nC

ite
se

er
co

Au
th

or
sC

ite
se

er

10
20

30
40

50
10

20
30

40
50

10
20

30
40

50
10

20
30

40
50

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

im
ba

la
nc

e/
pe

rc
en

t

operationcount,normalized

re
du

ct
io

ns
0

1
2

0
4

5

Fi
gu

re
5.

9:
C

ha
ng

e
in

op
er

at
io

n
co

un
t

of
th

e
C

ho
le

sk
y

fa
ct

or
iz

at
io

n
w

ith
th

e
im

ba
la

nc
e.

Fo
r

ea
ch

gr
ap

h,
th

e
op

er
at

io
n

co
un

t
is

no
rm

al
iz

ed
by

th
e

m
ax

im
um

va
lu

e.
R

ed
uc

tio
ns

ar
e

ab
br

ev
ia

te
d

as
in

Ta
bl

e
5.

3.
In

cr
ea

sin
g

th
e

im
ba

la
nc

e
in

cr
ea

se
s

th
e

op
er

at
io

n
co

un
t.

5.3. EXPERIMENTAL RESULTS 53

so
c-

Sl
as

hd
ot

09
02

we
b-

Go
og

le
wi

ki
-T

al
k

wo
rd

as
so

cia
tio

n-
20

11

lo
c-

br
ig

ht
ki

te
_e

dg
es

lo
c-

go
wa

lla
_e

dg
es

p2
p-

Gn
ut

ell
a0

4
PG

Pg
ia

nt
co

m
po

co
Au

th
or

sD
BL

P
co

Pa
pe

rs
Ci

te
se

er
em

ai
l-E

uA
ll

en
ro

n

am
az

on
-2

00
8

as
-2

2j
ul

y0
6

cit
at

io
nC

ite
se

er
co

Au
th

or
sC

ite
se

er

10
20

30
40

50
10

20
30

40
50

10
20

30
40

50
10

20
30

40
50

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

im
ba

la
nc

e/
pe

rc
en

t

runningtime,normalized

re
du

ct
io

ns
0

1
2

0
4

5

Fi
gu

re
5.

10
:

C
ha

ng
e

in
ru

nn
in

g
tim

e
of

re
du

ce
d

ne
st

ed
di

ss
ec

tio
n

w
ith

th
e

im
ba

la
nc

e.
Fo

r
ea

ch
gr

ap
h,

th
e

ru
nn

in
g

tim
e

is
no

rm
al

iz
ed

by
th

e
m

ax
im

um
va

lu
e.

R
ed

uc
tio

ns
ar

e
ab

br
ev

ia
te

d
as

in
Ta

bl
e

5.
3.

Fo
r

m
os

t
of

th
e

gr
ap

hs
,i

nc
re

as
in

g
th

e
im

ba
la

nc
e

al
so

in
cr

ea
se

s
th

e
ru

nn
in

g
tim

e.
H

ow
ev

er
,s

om
e

gr
ap

hs
ap

pe
ar

to
be

ne
fit

fr
om

in
cr

ea
se

d
im

ba
la

nc
e.

54 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.4 Exhaustive Application of Reductions
Here, we evaluate the influence of exhaustive application of reductions on the
number of non-zeros and operation count. We ran reduced nested dissection
for reduction combinations 0 1 2 and 0 4 5 with default parameters. To apply
reductions exhaustively, we apply the reductions in the specified order. Then,
as long as the number of nodes in the graph changes, we repeat the reduction
in the same order as before. We repeat this process on every recursion level.
Again, we use the same set of graphs as in Sections 5.3.2 and 5.3.3.

The results for combinations 0 1 2 and 0 4 5 are listed in Tables 5.8 and 5.9,
respectively. Also listed are the values from the experiments in Section 5.3.1
for the respective reduction combinations. With order 0 1 2 exhaustive appli-
cation of reductions leads to lower number of non-zeros and lower operation
count for the majority of graphs. For order 0 4 5 the result is less clear. It
appears that exhaustive reduction does not affect the quality of the ordering
in any significant way for this combination. However, applying the reduction
combination 0 1 2 exhaustively seems to improve the orderings.

Combination 0 1 2 contains only exact reductions. Combination 0 4 5 also
contains inexact reductions. We might conclude, that applying exact re-
ductions exhaustively improves the quality of the node orderings. However,
more results are needed to support this hypothesis.

5.3. EXPERIMENTAL RESULTS 55

N
um

be
r

of
N

on
-Z

er
os

O
pe

ra
tio

n
C

ou
nt

G
ra

ph
Ex

ha
us

tiv
e

Si
ng

le
Ex

ha
us

tiv
e

Si
ng

le

am
az

on
-2

00
8

2.
14
×

10
9

2.
38
×

10
9

5.
50
×

10
13

6.
66
×

10
13

as
-2

2j
ul

y0
6

1.
31
×

10
5

1.
41
×

10
5

6.
14
×

10
6

8.
83
×

10
6

ci
ta

ti
on

Ci
te

se
er

2.
67
×

10
8

2.
68
×

10
8

2.
08
×

10
12

2.
09
×

10
12

co
Au

th
or

sC
it

es
ee

r
4.

00
×

10
7

4.
05
×

10
7

1.
64
×

10
11

1.
63
×

10
11

co
Au

th
or

sD
BL

P
1.

46
×

10
8

1.
47
×

10
8

1.
22
×

10
12

1.
24
×

10
12

co
Pa

pe
rs

Ci
te

se
er

5.
00
×

10
8

4.
53
×

10
8

6.
77
×

10
12

5.
48
×

10
12

em
ai

l-
Eu

Al
l

6.
64
×

10
5

6.
62
×

10
5

4.
04
×

10
8

4.
00
×

10
8

en
ro

n
2.

89
×

10
6

2.
87
×

10
6

3.
20
×

10
9

3.
24
×

10
9

lo
c-

br
ig

ht
ki

te
_e

dg
es

1.
45
×

10
7

1.
45
×

10
7

4.
01
×

10
10

4.
06
×

10
10

lo
c-

go
wa

ll
a_

ed
ge

s
1.

61
×

10
8

1.
61
×

10
8

1.
19
×

10
12

1.
20
×

10
12

p2
p-

Gn
ut

el
la

04
4.

21
×

10
6

4.
68
×

10
6

7.
60
×

10
9

8.
94
×

10
9

PG
Pg

ia
nt

co
mp

o
7.

74
×

10
4

7.
59
×

10
4

3.
80
×

10
6

3.
52
×

10
6

so
c-

Sl
as

hd
ot

09
02

5.
67
×

10
7

5.
50
×

10
7

3.
82
×

10
11

3.
66
×

10
11

we
b-

Go
og

le
2.

79
×

10
7

2.
69
×

10
7

6.
13
×

10
10

5.
10
×

10
10

wi
ki

-T
al

k
9.

70
×

10
7

1.
00
×

10
8

8.
37
×

10
11

8.
76
×

10
11

wo
rd

as
so

ci
at

io
n-

20
11

3.
97
×

10
6

3.
98
×

10
6

6.
35
×

10
9

6.
41
×

10
9

Ta
bl

e
5.

8:
N

um
be

r
of

no
n-

ze
ro

s
an

d
op

er
at

io
n

co
un

t
fo

r
ex

ha
us

tiv
e

an
d

sin
gl

e
ap

pl
ic

at
io

n
of

re
du

ct
io

ns
w

ith
co

m
bi

na
tio

n
0
1
2
.

B
es

t
va

lu
es

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

56 CHAPTER 5. EXPERIMENTAL EVALUATION

N
um

be
r

of
N

on
-Z

er
os

O
pe

ra
tio

n
C

ou
nt

G
ra

ph
Ex

ha
us

tiv
e

Si
ng

le
Ex

ha
us

tiv
e

Si
ng

le

am
az

on
-2

00
8.

gr
ap

h
2.

27
×

10
9

2.
22
×

10
9

6.
15
×

10
13

5.
89
×

10
13

as
-2

2j
ul

y0
6.

gr
ap

h
1.

26
×

10
5

1.
24
×

10
5

5.
84
×

10
6

5.
44
×

10
6

ci
ta

tio
nC

ite
se

er
.g

ra
ph

2.
65
×

10
8

2.
65
×

10
8

2.
06
×

10
12

2.
05
×

10
12

co
A

ut
ho

rs
C

ite
se

er
.g

ra
ph

4.
01
×

10
7

3.
91
×

10
7

1.
64
×

10
11

1.
55
×

10
11

co
A

ut
ho

rs
D

B
LP

.g
ra

ph
1.

49
×

10
8

1.
48
×

10
8

1.
29
×

10
12

1.
24
×

10
12

co
Pa

pe
rs

C
ite

se
er

.g
ra

ph
4.

56
×

10
8

4.
44
×

10
8

5.
57
×

10
12

5.
25
×

10
12

em
ai

l-E
uA

ll.
gr

ap
h

6.
29
×

10
5

6.
61
×

10
5

3.
75
×

10
8

4.
01
×

10
8

en
ro

n.
gr

ap
h

2.
71
×

10
6

2.
74
×

10
6

2.
85
×

10
9

2.
86
×

10
9

lo
c-

br
ig

ht
ki

te
_

ed
ge

s.g
ra

ph
1.

47
×

10
7

1.
52
×

10
7

4.
15
×

10
10

4.
45
×

10
10

lo
c-

go
wa

lla
_

ed
ge

s.g
ra

ph
1.

60
×

10
8

1.
36
×

10
8

1.
17
×

10
12

8.
90
×

10
11

p2
p-

G
nu

te
lla

04
.g

ra
ph

4.
76
×

10
6

4.
69
×

10
6

9.
15
×

10
9

8.
97
×

10
9

PG
Pg

ia
nt

co
m

po
.g

ra
ph

7.
72
×

10
4

7.
72
×

10
4

3.
86
×

10
6

3.
88
×

10
6

so
c-

Sl
as

hd
ot

09
02

.g
ra

ph
6.

57
×

10
7

5.
57
×

10
7

4.
72
×

10
11

3.
74
×

10
11

we
b-

G
oo

gl
e.

gr
ap

h
2.

62
×

10
7

2.
62
×

10
7

5.
02
×

10
10

5.
01
×

10
10

w
ik

i-T
al

k.
gr

ap
h

1.
00
×

10
8

9.
78
×

10
7

8.
80
×

10
11

8.
60
×

10
11

wo
rd

as
so

ci
at

io
n-

20
11

.g
ra

ph
4.

12
×

10
6

4.
18
×

10
6

6.
84
×

10
9

7.
07
×

10
9

Ta
bl

e
5.

9:
N

um
be

r
of

no
n-

ze
ro

s
an

d
op

er
at

io
n

co
un

t
fo

r
ex

ha
us

tiv
e

an
d

sin
gl

e
ap

pl
ic

at
io

n
of

re
du

ct
io

ns
w

ith
co

m
bi

na
tio

n
0
4
5
.

B
es

t
va

lu
es

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

5.3. EXPERIMENTAL RESULTS 57

5.3.5 Node Ordering with Clustering
We ran the clustering based node ordering algorithm with reduction or-
ders 0 1 2 and 0 4 5 and default parameters for the nested dissection. Re-
sults for the graphs in Table 5.1 are presented in Tables 5.10 and 5.11.
Running times are listed in Table 5.12

The number of non-zeros and operation count of the obtained order-
ings are higher than those from nested dissection without reductions, in
some cases by multiple orders of magnitude. The clustering based algorithm
yields better results for the graphs p2p-Gnutella04, soc-Slashdot0902 and
wordassociation-2011. For five of the six largest graphs gotst was not
able to compute the factorization, which suggests that the ordering is much
worse than one computed with nested dissection.

In terms of running time, the clustering based algorithm is faster than
nested dissection without reductions in most cases, and often performs as
well as the fastest variant of reduced nested dissection. However, the im-
plementation is inefficient, in that to extract a subgraph corresponding to
a cluster we iterate through all nodes and test if they are in the cluster.
Optimizing this should bring the running time down further.

58 CHAPTER 5. EXPERIMENTAL EVALUATION

G
ra

ph
C

lu
st

er
in

g
(0

1
2)

C
lu

st
er

in
g

(0
4
5)

N
o

R
ed

uc
tio

ns

am
az

on
-2

00
8

—
—

2.
23
×

10
9

as
-2

2j
ul

y0
6

1.
04
×

10
6

9.
61
×

10
5

1.
34
×

10
5

as
-s

ki
tt

er
5.

85
×

10
8

5.
76
×

10
8

3.
65
×

10
8

ci
ta

ti
on

Ci
te

se
er

6.
82
×

10
9

6.
70
×

10
9

2.
66
×

10
8

cn
r-

20
00

9.
23
×

10
8

9.
02
×

10
8

4.
92
×

10
6

co
Au

th
or

sC
it

es
ee

r
4.

23
×

10
9

4.
29
×

10
9

4.
16
×

10
7

co
Au

th
or

sD
BL

P
7.

67
×

10
9

7.
75
×

10
9

1.
51
×

10
8

co
Pa

pe
rs

Ci
te

se
er

—
—

5.
04
×

10
8

co
Pa

pe
rs

DB
LP

—
—

1.
67
×

10
9

em
ai

l-
Eu

Al
l

1.
01
×

10
6

1.
47
×

10
6

7.
72
×

10
5

en
ro

n
1.

89
×

10
7

1.
79
×

10
7

3.
06
×

10
6

eu
-2

00
5

—
—

1.
89
×

10
8

in
-2

00
4

—
—

2.
26
×

10
7

lo
c-

br
ig

ht
ki

te
_e

dg
es

2.
94
×

10
7

2.
93
×

10
7

1.
56
×

10
7

lo
c-

go
wa

ll
a_

ed
ge

s
3.

76
×

10
8

3.
93
×

10
8

1.
37
×

10
8

p2
p-

Gn
ut

el
la

04
4.

63
×

10
6

4.
89
×

10
6

4.
81
×

10
6

PG
Pg

ia
nt

co
mp

o
4.

90
×

10
6

5.
32
×

10
6

7.
55
×

10
4

so
c-

Sl
as

hd
ot

09
02

5.
56
×

10
7

5.
66
×

10
7

5.
69
×

10
7

we
b-

Go
og

le
1.

50
×

10
10

1.
51
×

10
10

2.
47
×

10
7

wi
ki

-T
al

k
1.

21
×

10
9

1.
12
×

10
9

1.
06
×

10
8

wo
rd

as
so

ci
at

io
n-

20
11

4.
32
×

10
6

4.
13
×

10
6

4.
20
×

10
6

Ta
bl

e
5.

10
:

N
um

be
ro

fn
on

-z
er

os
fo

rn
od

eo
rd

er
in

g
w

ith
cl

us
te

rin
g

an
d

ne
st

ed
di

ss
ec

tio
n

w
ith

ou
tr

ed
uc

tio
ns

Lo
w

es
tv

al
ue

sa
re

hi
gh

lig
ht

ed
in

bo
ld

.
W

he
re

va
lu

es
ar

e
m

iss
in

g,
go

ts
t

w
as

no
t

ab
le

to
fin

ish
th

e
fa

ct
or

iz
at

io
n.

5.3. EXPERIMENTAL RESULTS 59
G

ra
ph

C
lu

st
er

in
g

(0
1
2)

C
lu

st
er

in
g

(0
4
5)

N
o

R
ed

uc
tio

n

am
az

on
-2

00
8

—
—

5.
76
×

10
13

as
-2

2j
ul

y0
6

7.
25
×

10
8

6.
25
×

10
8

6.
66
×

10
6

as
-s

ki
tt

er
8.

20
×

10
12

8.
04
×

10
12

4.
62
×

10
12

ci
ta

ti
on

Ci
te

se
er

3.
44
×

10
14

3.
31
×

10
14

2.
09
×

10
12

cn
r-

20
00

1.
37
×

10
13

1.
35
×

10
13

3.
44
×

10
8

co
Au

th
or

sC
it

es
ee

r
1.

60
×

10
14

1.
64
×

10
14

1.
72
×

10
11

co
Au

th
or

sD
BL

P
4.

04
×

10
14

4.
11
×

10
14

1.
29
×

10
12

co
Pa

pe
rs

Ci
te

se
er

—
—

6.
75
×

10
12

co
Pa

pe
rs

DB
LP

—
—

3.
83
×

10
13

em
ai

l-
Eu

Al
l

6.
72
×

10
8

1.
22
×

10
9

5.
18
×

10
8

en
ro

n
5.

00
×

10
10

4.
23
×

10
10

3.
54
×

10
9

eu
-2

00
5

—
—

6.
41
×

10
11

in
-2

00
4

—
—

3.
52
×

10
9

lo
c-

br
ig

ht
ki

te
_e

dg
es

1.
04
×

10
11

1.
02
×

10
11

4.
67
×

10
10

lo
c-

go
wa

ll
a_

ed
ge

s
4.

18
×

10
12

4.
80
×

10
12

9.
16
×

10
11

p2
p-

Gn
ut

el
la

04
8.

72
×

10
9

9.
54
×

10
9

9.
33
×

10
9

PG
Pg

ia
nt

co
mp

o
5.

25
×

10
9

6.
32
×

10
9

3.
53
×

10
6

so
c-

Sl
as

hd
ot

09
02

3.
70
×

10
11

3.
84
×

10
11

3.
84
×

10
11

we
b-

Go
og

le
1.

31
×

10
15

1.
30
×

10
15

4.
35
×

10
10

wi
ki

-T
al

k
3.

20
×

10
13

2.
74
×

10
13

9.
58
×

10
11

wo
rd

as
so

ci
at

io
n-

20
11

7.
58
×

10
9

7.
06
×

10
9

6.
98
×

10
9

Ta
bl

e
5.

11
:

O
pe

ra
tio

n
co

un
t

fo
r

no
de

or
de

rin
g

w
ith

cl
us

te
rin

g
an

d
ne

st
ed

di
ss

ec
tio

n
w

ith
ou

t
re

du
ct

io
ns

Lo
w

es
t

va
lu

es
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

W
he

re
va

lu
es

ar
e

m
iss

in
g,

go
ts

t
w

as
no

t
ab

le
to

fin
ish

th
e

fa
ct

or
iz

at
io

n.

60 CHAPTER 5. EXPERIMENTAL EVALUATION

G
ra

ph
C

lu
st

er
in

g
(0

1
2)

C
lu

st
er

in
g

(0
4
5)

N
o

R
ed

uc
tio

ns
Fa

st
es

t
Va

ria
nt

am
az

on
-2

00
8

41
04

.1
9

4
05

3.
28

61
20

.5
2

52
14

.1
as

-2
2j

ul
y0

6
32

.6
4

29
.7

2
78

.9
5

31
.7

8
as

-s
ki

tt
er

12
89

0.
6

12
52

3.
7

13
27

2.
8

11
12

4.
6

ci
ta

ti
on

Ci
te

se
er

11
21

.3
4

1
09

8.
51

18
51

.5
8

12
75

.4
4

cn
r-

20
00

95
91

.8
1

10
69

3.
6

13
13

3.
5

9
00

5.
64

co
Au

th
or

sC
it

es
ee

r
40

5.
67

51
7.

74
87

1.
01

19
3.

23
co

Au
th

or
sD

BL
P

90
6.

16
91

0.
87

14
12

.1
4

44
6.

39
co

Pa
pe

rs
Ci

te
se

er
34

23
.0

1
59

75
.6

6
17

17
5.

1
75

1.
45

co
Pa

pe
rs

DB
LP

47
08

.4
3

60
83

.5
4

12
92

8.
8

2
42

1.
95

em
ai

l-
Eu

Al
l

45
.3

4
41

.4
0

12
3.

71
43

.6
9

en
ro

n
20

8.
97

20
1.

81
45

1.
55

18
5.

21
eu

-2
00

5
28

71
6.

1
43

87
7.

4
42

34
2.

1
24

38
9.

1
in

-2
00

4
19

70
0.

9
27

15
4.

8
37

90
3.

6
8

34
2.

76
lo

c-
br

ig
ht

ki
te

_e
dg

es
16

6.
13

14
4.

28
28

7.
44

14
2.

08
lo

c-
go

wa
ll

a_
ed

ge
s

13
79

.7
5

96
6.

73
19

71
.3

1
97

6.
18

p2
p-

Gn
ut

el
la

04
32

.0
5

29
.6

9
38

.1
3

30
.1

0
PG

Pg
ia

nt
co

mp
o

2.
68

2.
99

27
.8

7
9.

26
so

c-
Sl

as
hd

ot
09

02
51

7.
70

55
4.

11
52

3.
23

49
3.

93
we

b-
Go

og
le

13
37

.7
6

13
79

.4
8

25
46

.9
9

1
25

3.
78

wi
ki

-T
al

k
24

45
.8

5
2

29
1.

23
66

71
.4

4
23

71
.8

1
wo

rd
as

so
ci

at
io

n-
20

11
56

.3
8

54
.2

4
76

.4
7

53
.7

9

Ta
bl

e
5.

12
:

R
un

ni
ng

tim
es

fo
r

no
de

or
de

rin
g

w
ith

cl
us

te
rin

g
(fi

rs
t

tw
o

co
lu

m
ns

,
re

du
ct

io
n

co
m

bi
na

tio
n

in
pa

re
nt

he
se

s)
,

fo
r

ne
st

ed
di

ss
ec

tio
n

w
ith

ou
t

re
du

ct
io

ns
an

d
fo

r
th

e
fa

st
es

t
va

ria
nt

of
re

du
ce

d
ne

st
ed

di
ss

ec
tio

n
(f

ro
m

th
e

ex
pe

rim
en

ts
in

Se
ct

io
n

5.
3.

1)
.

A
ll

ru
nn

in
g

tim
es

ar
e

in
se

co
nd

s.
Lo

w
es

t
ru

nn
in

g
tim

es
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

Chapter 6

Discussion

6.1 Future Work

Our implementation of the minimum degree algorithm does not make use
of the improvements described in Section 3.2. Incorporating these should
further improve the running time. However, it is not necessarily clear if
they can simply be used together with the reductions or if they need to be
adjusted somehow. It might be helpful to associate with each node infor-
mation on how it is related to the original graph.

So far, we use three exact and two inexact reductions. Corollary 4.2.1
suggests a new exact reduction, where nodes with degree two are eliminated.
To implement this requires testing for every node with degree two to see if
it is in a cycle. A naïve implementation based on breadth-first search would
have a worst case complexity of O(n2) for a graph with n nodes. However,
this should be faster in practice. For example, all neighbors of a node x with
degree two are in a cycle if x is in a cycle. If we can efficiently test if a node
with degree two is in a cycle, we can also test if it is not in a cycle. Thus, we
can find nodes that are separators and we need to compute fewer separators.

Orderings from our clustering-based algorithm are of low quality. Intu-
itively, we expect clusters to be ordered together. However, it is not clear
how graph clustering and the minimum fill-in problem are connected. There
are some possible modifications to this algorithm. First, a different clus-
tering algorithm might improve the node orderings. How we define clus-
ters plays an important role here. However, the clustering algorithm should
not be too expensive, otherwise we do not gain the desired improvement in
running time over reduced nested dissection. Second, the graph can be re-
duced before the clustering step. This way we can guarantee that nodes that
should be eliminated together do not end up in different clusters. Lastly, it

61

62 CHAPTER 6. DISCUSSION

might be beneficial to take connections between the clusters into account
when ordering the individual subgraphs.

6.2 Conclusion
In this thesis we introduced exact and inexact reductions for the minimum
fill-in problem. We applied them in a nested dissection algorithm, which
we call reduced nested dissection. We also introduced an algorithm for the
minimum fill-in problem based on graph clustering.

Our reduced nested dissection algorithm is faster than nested dissec-
tion without reductions, with a median improvement close to 50%. It also
yields orderings with lower number of non-zeros and operation count for the
Cholesky factorization. However, applying reductions exhaustively has only
a small impact on the quality of the node orderings.

The clustering based algorithm leads to node orderings that are orders
of magnitudes worse than those from nested dissection, both in terms of
the number of non-zeros and the operation count. However, the running
time of our implementation is close to that of reduced nested dissection
and can still be improved further.

Bibliography

[1] F. N. Abu Khzam. “Topics in graph algorithms: structural results
and algorithmic techniques, with applications”. PhD thesis. 2003. url:
https://trace.tennessee.edu/utk_graddiss/1954/.

[2] T. Akiba and Y. Iwata. “Branch-and-reduce exponential/FPT algo-
rithms in practice: A case study of vertex cover”. In: Theor. Comput.
Sci. 609 (2016), pp. 211–225. issn: 0304–3975. doi: 10.1016/j.tcs.
2015.09.023.

[3] P. Amestoy, T. Davis, and I. Duff. “An approximate minimum de-
gree ordering algorithm”. In: SIAM J. Matrix Anal. Appl. 17.4 (1996),
pp. 886–905. doi: 10.1137/S0895479894278952.

[4] C. Ashcraft. “Compressed graphs and the minimum degree algorithm”.
In: SIAM J. Sci. Comput. 16.6 (1995), pp. 1404–1411. doi: 10.1137/
0916081.

[5] C. Ashcraft and J. W. H. Liu. “Generalized nested dissection: some
recent progress”. In: Proceedings of the Fifth SIAM Conference on Ap-
plied Linear Algebra. Ed. by J. G. Lewis. SIAM Publications, 1994,
pp. 130–134.

[6] C. Ashcraft and J. W. H. Liu. “Robust ordering of sparse matrices using
multisection”. In: SIAM J. Matrix Anal. Appl. 19.3 (1998), pp. 816–832.
doi: 10.1137/S0895479896299081.

[7] U. Bertele and F. Brioschi. “A new algorithm for the solution of the
secondary optimization problem in non-serial dynamic programming”.
In: J. Math. Anal. Appl. 27.3 (1969), pp. 565–574.

[8] U. Bertele and F. Brioschi. “Contribution to nonserial dynamic pro-
gramming”. In: J. Math. Anal. Appl. 28.2 (1969), pp. 313–325.

[9] J. R. Blair, P. Heggernes, and J. A. Telle. “A practical algorithm for
making filled graphs minimal”. In: Theor. Comput. Sci. 250.1 (2001),
pp. 125–141. doi: 10.1016/S0304-3975(99)00126-7.

63

https://trace.tennessee.edu/utk_graddiss/1954/
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1137/S0895479894278952
https://doi.org/10.1137/0916081
https://doi.org/10.1137/0916081
https://doi.org/10.1137/S0895479896299081
https://doi.org/10.1016/S0304-3975(99)00126-7

64 BIBLIOGRAPHY

[10] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. “Recent
advances in graph partitioning”. In: Algorithm Engineering: Selected
Results and Surveys. Ed. by L. Kliemann and P. Sanders. Springer
International Publishing, 2016, pp. 117–158. doi: 10.1007/978-3-
319-49487-6_4.

[11] J. F. Buss and J. Goldsmith. “Nondeterminism within P ∗”. In: SIAM
J. Comput. 22.3 (1993), pp. 560–572. doi: 10.1137/0222038.

[12] J. Chen, I. A. Kanj, and G. Xia. “Improved upper bounds for vertex
cover”. In: Theor. Comput. Sci. 411.40 (2010), pp. 3736–3756. doi:
10.1016/j.tcs.2010.06.026.

[13] B. Chor, M. Fellows, and D. Juedes. “Linear kernels in linear time, or
how to save k colors in O(n2) steps”. In: Graph-Theoretic Concepts in
Computer Science. Ed. by J. Hromkovič, M. Nagl, and B. Westfechtel.
Berlin, Heidelberg: Springer, 2005, pp. 257–269.

[14] F. R. K. Chung and D. B. Mumford. “Chordal completions of planar
graphs”. In: J. Comb. Theory. B 62.1 (1994), pp. 96–106. doi: 10.
1006/jctb.1994.1056.

[15] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. “A column ap-
proximate minimum degree ordering algorithm”. In: ACM Trans. Math.
Softw. 30.3 (2004), pp. 353–376. doi: 10.1145/1024074.1024079.

[16] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix
Collection”. In: ACM Trans. Math. Softw. 38.1 (2011), pp. 1–25. doi:
10.1145/2049662.2049663.

[17] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. “A survey of
direct methods for sparse linear systems”. In: Acta Numer. 25 (2016),
pp. 383–566. doi: 10.1017/S0962492916000076.

[18] A. George. “Nested dissection of a regular finite element mesh”. In:
SIAM J. Numer. Anal. 10.2 (1973), pp. 345–363. doi: 10 . 1137 /
0710032.

[19] A. George and J. W. H. Liu. “A fast implementation of the minimum
degree algorithm using quotient graphs”. In: ACM Trans. Math. Softw.
6.3 (1980), pp. 337–358. doi: 10.1145/355900.355906.

[20] A. George and J. W. H. Liu. “A quotient graph model for symmetric
faetorization”. In: Sparse Matrix Proceedings 1978. Ed. by I. S. Duff
and G. W. Stewart. SIAM Publications, 1978, pp. 154–175.

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1137/0222038
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1006/jctb.1994.1056
https://doi.org/10.1006/jctb.1994.1056
https://doi.org/10.1145/1024074.1024079
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.1145/355900.355906

BIBLIOGRAPHY 65

[21] A. George and J. W. H. Liu. “An automatic nested dissection algorithm
for irregular finite element problems”. In: SIAM J. Numer. Anal. 15.5
(1978), pp. 1053–1069. doi: 10.1137/0715069.

[22] A. George and J. W. H. Liu. “The evolution of the minimum degree
ordering algorithm”. In: SIAM Rev. 31.1 (1989), pp. 1–19. doi: 10.
1137/1031001.

[23] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
2013.

[24] M. T. Heath, E. Ng, and B. W. Peyton. “Parallel algorithms for sparse
linear systems”. In: SIAM Rev. 33.3 (1991), pp. 420–460. doi: 10.1137/
1033099.

[25] P. Heggernes. “Minimal triangulations of graphs: A survey”. In: Dis-
crete Math. 306.3 (2006). Minimal Separation and Minimal Triangula-
tion, pp. 297–317. doi: 10.1016/j.disc.2005.12.003.

[26] B. Hendrickson and E. Rothberg. “Improving the run time and quality
of nested dissection ordering”. In: SIAM J. Sci. Comput. 20.2 (1998),
pp. 468–489. doi: 10.1137/S1064827596300656.

[27] A. J. Hoffman, M. S. Martin, and D. J. Rose. “Complexity bounds for
regular finite difference and finite element grids”. In: SIAM J. Numer.
Anal. 10.2 (1973), pp. 364–369. doi: 10.1137/0710033.

[28] Y. Iwata. “A faster algorithm for dominating set analyzed by the po-
tential method”. In: Parameterized and Exact Computation. Ed. by D.
Marx and P. Rossmanith. Berlin, Heidelberg: Springer, 2012, pp. 41–
54.

[29] G. Karypis and V. Kumar. “A fast and high quality multilevel scheme
for partitioning irregular graphs”. In: SIAM J. Sci. Comput. 20.1
(1998), pp. 359–392. doi: 10.1137/S1064827595287997.

[30] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck.
“Finding near-optimal independent sets at scale”. In: J. Heuristics
23.4 (2017), pp. 207–229. doi: 10.1007/s10732-017-9337-x.

[31] S. L. Lauritzen and D. J. Spiegelhalter. “Local computations with prob-
abilities on graphical structures and their application to expert sys-
tems”. In: J. Roy. Stat. Soc. B. Met. 50.2 (1988), pp. 157–194. doi:
10.1111/j.2517-6161.1988.tb01721.x.

https://doi.org/10.1137/0715069
https://doi.org/10.1137/1031001
https://doi.org/10.1137/1031001
https://doi.org/10.1137/1033099
https://doi.org/10.1137/1033099
https://doi.org/10.1016/j.disc.2005.12.003
https://doi.org/10.1137/S1064827596300656
https://doi.org/10.1137/0710033
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x

66 BIBLIOGRAPHY

[32] R. J. Lipton, D. J. Rose, and R. E. Tarjan. “Generalized nested dis-
section”. In: SIAM J. Numer. Anal. 16.2 (1979), pp. 346–358. doi:
10.1137/0716027.

[33] R. J. Lipton and R. E. Tarjan. “A separator theorem for planar graphs”.
In: SIAM J. Appl. Math. 36.2 (1979), pp. 177–189. doi: 10.1137/
0136016.

[34] H. M. Markowitz. “The elimination form of the inverse and its applica-
tion to linear programming”. In: Manag. Sci. 3.3 (1957), pp. 255–269.
doi: 10.1287/mnsc.3.3.255.

[35] H. Meyerhenke, P. Sanders, and C. Schulz. “Partitioning complex net-
works via size-constrained clustering”. In: Experimental Algorithms. Ed.
by J. Gudmundsson and J. Katajainen. Springer International Publish-
ing, 2014, pp. 351–363.

[36] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. “Minimal triangulation of a
graph and optimal pivoting order in a sparse matrix”. In: J. Math. Anal.
Appl. 54.3 (1976), pp. 622–633. doi: 10.1016/0022-247X(76)90182-7.

[37] S. Parter. “The use of linear graphs in gauss elimination”. In: SIAM
Rev. 3.2 (1961), pp. 119–130. doi: 10.1137/1003021.

[38] F. Pellegrini. Scotch. url: https://www.labri.fr/perso/pelegrin/
scotch/ (visited on 03/18/2019).

[39] A. Pothen, H. Simon, and K. Liou. “Partitioning sparse matrices with
eigenvectors of graphs”. In: SIAM J. Matrix Anal. Appl. 11.3 (1990),
pp. 430–452. doi: 10.1137/0611030.

[40] U. N. Raghavan, R. Albert, and S. Kumara. “Near linear time algo-
rithm to detect community structures in large-scale networks”. In: Phys.
Rev. E 76 (3 2007), p. 036106. doi: 10.1103/PhysRevE.76.036106.

[41] D. J. Rose. “A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations”. In: Graph Theory and
Computing. Ed. by R. C. Read. Academic Press, 1972, pp. 183–217.
doi: 10.1016/B978-1-4832-3187-7.50018-0.

[42] D. J. Rose. “Triangulated graphs and the elimination process”. In:
J. Math. Anal. Appl. 32 (1970), pp. 597–609. doi: 10.1016/0022-
247X(70)90282-9.

[43] D. Rose, R. E. Tarjan, and G. S. Lueker. “Algorithmic aspects of vertex
elimination on graphs”. In: SIAM J. Comput. 5.2 (1976), pp. 266–283.
doi: 10.1137/0205021.

https://doi.org/10.1137/0716027
https://doi.org/10.1137/0136016
https://doi.org/10.1137/0136016
https://doi.org/10.1287/mnsc.3.3.255
https://doi.org/10.1016/0022-247X(76)90182-7
https://doi.org/10.1137/1003021
https://www.labri.fr/perso/pelegrin/scotch/
https://www.labri.fr/perso/pelegrin/scotch/
https://doi.org/10.1137/0611030
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1016/B978-1-4832-3187-7.50018-0
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1137/0205021

BIBLIOGRAPHY 67

[44] P. Sanders and C. Schulz. “Advanced multilevel node separator algo-
rithms”. In: Experimental Algorithms. Ed. by A. V. Goldberg and A. S.
Kulikov. Springer International Publishing, 2016, pp. 294–309.

[45] P. Sanders and C. Schulz. “Think locally, act globally: Highly bal-
anced graph partitioning”. In: Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13). Vol. 7933. LNCS.
Springer, 2013, pp. 164–175.

[46] C. Schulz. “High quality graph partitioning”. PhD thesis. 2013. doi:
10.5445/IR/1000035713.

[47] A. J. Soper, C. Walshaw, and M. Cross. “A combined evolutionary
search and multilevel optimisation approach to graph-partitioning”. In:
J. Global. Optim. 29.2 (2004), pp. 225–241. doi: 10.1023/B:JOGO.
0000042115.44455.f3.

[48] B. Speelpenning. The generalized element method. Tech. rep.
UIUCDCS-R-78-946. Urbana, IL: Department of Computer Science,
University of Illinois at Urbana-Champaign, 1978.

[49] R. E. Tarjan and A. E. Trojanowski. “Finding a maximum independent
set”. In: SIAM J. Comput. 6.3 (1977), pp. 537–546. doi: 10.1137/
0206038.

[50] W. F. Tinney and J. W. Walker. “Direct solutions of sparse network
equations by optimally ordered triangular factorization”. In: Proc.
IEEE 55.11 (1967), pp. 1801–1809. doi: 10.1109/PROC.1967.6011.

[51] M. Xiao and H. Nagamochi. “Confining sets and avoiding bottleneck
cases: A simple maximum independent set algorithm in degree-3
graphs”. In: Theor. Comput. Sci. 469 (2013), pp. 92–104. doi:
10.1016/j.tcs.2012.09.022.

[52] M. Xiao and H. Nagamochi. “Exact algorithms for maximum indepen-
dent set”. In: Algorithms and Computation. Ed. by L. Cai, S.-W. Cheng,
and T.-W. Lam. Berlin, Heidelberg: Springer, 2013, pp. 328–338.

[53] M. Yannakakis. “Computing the minimum fill-in is NP-complete”. In:
SIAM J. Algebraic Discrete Methods 2.1 (1981), pp. 77–79. doi: 10.
1137/0602010.

https://doi.org/10.5445/IR/1000035713
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1137/0206038
https://doi.org/10.1137/0206038
https://doi.org/10.1109/PROC.1967.6011
https://doi.org/10.1016/j.tcs.2012.09.022
https://doi.org/10.1137/0602010
https://doi.org/10.1137/0602010

	Introduction
	Our Contribution
	Structure of the Thesis

	Fundamentals
	Symmetric Factorization
	Node Ordering

	Related Work
	Minimum Fill-In Orderings
	The Minimum Degree Algorithm
	Nested Dissection
	Node Separators
	Reduction Rules
	Label Propagation

	Reduced Nested Dissection
	Exact Reductions
	Simplicial Nodes
	Indistinguishable Nodes
	Twins
	Path Compression

	Inexact Reductions
	Degree-2 Elimination
	Triangle Contraction

	Node Ordering with Graph Clustering

	Experimental Evaluation
	Implementation Details
	Experimental Setup
	Experimental Results
	Combinations of Reductions
	Effect of the Recursion Limit on Running Time and Quality
	Effect of the Imbalance Constraint on Running Time and Quality
	Exhaustive Application of Reductions
	Node Ordering with Clustering

	Discussion
	Future Work
	Conclusion

	Bibliography

