Lniversitat
wien

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

,Reduced Nested Dissection for Fill Reducing Node
Orderings”

verfasst von / submitted by
Wolfgang Martin Ost, BSc ETH MSc ETH

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2019 / Vienna 2019

Studienkennzahl It. Studienblatt / A 066 910
degree programme code as it appears on
the student record sheet:

Studienrichtung It. Studienblatt / Computational Science
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. Monika Henzinger

Mitbetreut von / Co-Supervisor: Dipl.-Math. Dipl.-Inform. Dr. Christian Schulz
Prof. Darren Strash, Hamilton College

11

web-version, modified titlepage

Abstract

When factorizing sparse matrices, non-zeros can be introduced. These non-
zeros are called fill-in. If the fill-in is large, factorization can become pro-
hibitively expensive in terms of storage and computation time. A permuta-
tion of a matrix can reduce the fill-in and make factorization feasible. The
minimum fill-in problem is to find a permutation that minimizes the fill-in.
It is commonly solved using a graph representation of the matrix.

We introduce reduction rules for the minimum fill-in problem and ap-
ply them in a nested dissection algorithm we call reduced nested dissection.
Reducing the graphs reduces the time to compute node separators, which
speeds up the nested dissection algorithm.

We evaluate the performance of reduced nested dissection on a set of
social networks, citation networks and web graphs. Our reductions initially
reduce the graphs to approximately half their size. They improve the number
of non-zeros by 2.5% and the operation count of factorization by 5% over
nested dissection without reductions. The running time is reduced by 45%
on average, with the best improvement at 95.6%.

We also introduce an algorithm for the minimum fill-in problem based on
graph clustering, intended to allow for faster computation of node orderings
compared to nested dissection. Orderings from this algorithm lead to orders
of magnitudes more non-zeros compared to nested dissection, and the running
time is reduced only slightly over reduced nested dissection.

il

iv

Zusammenfassung

Bei der Faktorisierung von diinn besetzten Matrizen entstehen oft neue
Nicht-Nullen. Diese neuen Elemente werden als Fill-In bezeichnet. Ist
der Fill-In groB, kann die Faktorisierung im Hinblick auf Speicherbedarf
und Laufzeit teuer werden. FEine Permutation der Matrix kann den
Fill-In reduzieren und die Faktorisierung ermoglichen. Das Problem,
eine Permutation zu finden, die den Fill-In minimiert, wird iiblicherweise
mit einem graphtheoretischen Ansatz gelost.

Wir entwickeln einen Algorithmus auf der Basis von Nested Dissection,
genannt Reduced Nested Dissection. Mit Hilfe von Reduktionsregeln
verkleinern wir die Graphen und verringern damit die Zeit, die bendtigt
wird, um Trenner zu finden. Damit wird der Nested Dissection Al-
gorithmus signifikant beschleunigt.

Wir evaluieren Reduced Nested Dissection anhand von sozialen Netzw-
erken und dhnlichen Graphen. Mit unseren Reduktionen verringert sich die
Anzahl an Nicht-Nullen in den Matrixfaktoren um 2.5% und die Anzahl an
Operationen in der Faktorisierung um 5%. Die Laufzeit verbessert sich im
Schnitt um 45%, mit einer maximalen Verbesserung von 95.6%.

Weiterhin fiihren wir einen Algorithmus fiir das Fill-In Problem ein, der
auf Clustering von Graphen aufbaut. Das Ziel ist, Permutationen in gerin-
gerer Zeit als mit Reduced Nested Dissection zu erhalten. Dieser Algorithmus
fithrt zu Permutationen mit Anzahl an Nicht-Nullen und Operationen die um
Groflenordnungen iiber Ergebnissen von Nested Dissection liegen. Er ist nur
wenig schneller als Reduced Nested Dissection.

vi

Acknowledgment

I am thankful to Dr. Christian Schulz and Prof. Darren Strash for their
guidance and valuable insight. Our weekly meetings were always helpful.

The thesis would not have been possible without Prof. Monika
Henzinger’s official supervision.

Thanks also go to my friends who were a great source of motivation
and moral support over the last two years.

I am grateful to my parents for supporting me through all my studies and
enabling me to pursue this second Master’s degree. I would not be where
I am without their continued patience and support.

vii

viil

Contents

1 Introduction
1.1 Our Contribution
1.2 Structure of the Thesis

2 Fundamentals
2.1 Symmetric Factorization
2.2 Node Ordering

3 Related Work
3.1 Minimum Fill-In Orderings
3.2 The Minimum Degree Algorithm
3.3 Nested Dissection L.
3.4 Node Separators
3.5 Reduction Rules
3.6 Label Propagation

4 Reduced Nested Dissection
4.1 Exact Reductions
4.1.1 Simplicial Nodes
4.1.2 Indistinguishable Nodes
4.1.3 Twins
4.1.4 Path Compression
4.2 Inexact Reductions L.
4.2.1 Degree-2 Elimination
4.2.2 Triangle Contraction
4.3 Node Ordering with Graph Clustering

5 Experimental Evaluation
5.1 Implementation Details
5.2 Experimental Setup
5.3 Experimental Results

X

11
11
12
14
15
16
17

19
20
20
21
23
23
27
27
28
29

X CONTENTS

5.3.1 Combinations of Reductions 37
5.3.2 Effect of the Recursion Limit on Running Time and
Quality 46
5.3.3 Effect of the Imbalance Constraint on Running Time
and Quality 50
5.3.4 Exhaustive Application of Reductions 54
5.3.5 Node Ordering with Clustering 57
6 Discussion 61
6.1 Future Work 61
6.2 Conclusion. 62

Bibliography 63

Chapter 1

Introduction

Solving sparse linear systems of equations
Ar=b (1.0.1)

is a fundamental task in scientific computing. Such equations arise in a
variety of applications, such as computational fluid dynamics, structural en-
gineering, economic modeling and circuit simulation [16].

Sparse linear systems can be solved by direct methods [17, 23]. Such
methods decompose the matrix A into factors that simplify the solution of
the system. The drawback is, that such factors can become dense, i.e., they
have many more non-zeros than the original matrix [17, 23, 41]. Then,
solving the system is prohibitively expensive in terms of storage and com-
putation time. The number of new non-zeros introduced by factorization is
called the fill-in. By reordering the system, this fill-in can be significantly
reduced, leading to sparse factors [17, 23, 41].

For symmetric positive definite matrices’ we can reorder rows and
columns by a symmetric permutation PAPT [23, 41]. The minimum
fill-in problem is to find a permutation matrix P, such that the number
of non-zeros introduced during factorization is minimized.

This problem can be solved using a graph theoretic approach introduced
by Porter [37] and Rose [41]. A symmetric matrix A = (a;;)7;_, is represented
by an undirected graph G, where nodes represent the rows and columns of A.
Nodes 7, j in G are connected by an edge if the matrix element a;; # 0. An
elimination step in A is reflected in G' by removing the node corresponding
to the eliminated column and connecting its neighborhood to form a clique.
These added edges provide an upper bound to the number of non-zeros intro-
duced in an elimination step. By minimizing this bound, we obtain the de-
sired permutation matrix P. Figure 1.1 illustrates this model of elimination.

!which can be factored by Cholesky factorization [23]

INTRODUCTION

CHAPTER 1.

"UOIYRZII0YDR] 91} SULIND pajeIstad st ul-[[f ou uorjejnuriod o) YA\ "A[eo[dwiod Ul paf[y ST X1I1Jeul o1} uorjejnuriod o1y
INOYIIA\ L PUe T sepou SurSueyoxa o} spuodsolrod UWN[od YIUaAds pue 18I oy} Surnurrad jey) 230N "Xiijewl pajnuiiod :mo[9q ‘XIIjew
palopIoun :9AO(Y “UOIJRUIMI[URISSNERY) OLIjeWWAS Jo dojs ® I9jje pue o10joq Tdeld Surpuodsellod o) pue XMW Y [a4nbig

* k% ok ok ok @

* * % %k %k ok k%
(£) L 0. () | 17
oo uolteuiw|g oo
© L =S O G BRI
% % d1IIPWWAG « «
(9)) : : (9) |- :
* *

() ' (9

3ulepIO YUM

uozeuIW|J
bdastans =

JlIIPWWAG

* Q k* ok ok ok ok Xk

BuuspIO 1NOYUAA

* Kk X X X ¥
* X X X X K
* X X X X X
* X X X X X
* X X X X ¥
* X X X X ¥
*
*
*
* X X X X X ¥

*
*

1.1. OUR CONTRIBUTION 3

The minimum fill-in problem is NP-complete [53], so heuristics such as the
minimum degree algorithm [41, 50] and nested dissection [18] are commonly
used. The minimum degree algorithm is a greedy scheme, eliminating the
minimum degree node at every step. Nested dissection computes a node
separator and orders the subgraphs recursively.

1.1 Our Contribution

We introduce reduction rules to reduce the graph size, allowing for faster
computation of fill-reducing orderings, while maintaining or even improving
their quality. We extend nested dissection by applying these reductions at
every level, which reduces the time to compute the node separator. We also
describe a new algorithm for the fill-in problem based on graph clustering.

Our reduction rules initially reduce the graphs to approximately half
their size. The running time of nested dissection is reduced by approxi-
mately 45%. Our reductions reduce the number of non-zeros and operation
count by around 2.5% and 5%, respectively.

The clustering based algorithm leads to higher fill-in and operation count
than nested dissection. It is faster than nested dissection and often as fast
or faster than nested dissection with reductions.

1.2 Structure of the Thesis

The thesis is structured as follows. Chapter 2 introduces the graph theoretic
basics and formally defines node orderings and the fill-in problem. Chap-
ter 3 provides an overview over related problems and algorithms. Chapter 4
introduces our algorithm and the reduction rules. Our experiments to eval-
uate our implementation are described in Chapter 5. Chapter 6 provides an
overview over future challenges and concludes the thesis.

CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

An undirected graph G = (V, E) is a set of nodes V connected by a set F
of undirected edges. The set of nodes adjacent to a node z € V form its
open neighborhood Ng(z) :=={y € V | {z,y} € E}. The closed neighborhood
Ng¢lz] also contains the node itself: Ng[z] := Ng(z) U {z}. The size of a
node’s neighborhood is its degree deg(x) := |Ng(z)|. For a set of nodes
A CV we define its neighborhood Ng(A) := (UzealNg(z)) \ A. When clear
from the context we omit G and write N(z), N|[z] and N(A), respectively.

Let a,b € V. Node a dominates node b if N[b] C Nla]. If N[a] = NIb|,
then a and b are indistinguishable. Nodes a and b are twins if N(a) = N(b).

Given a set of nodes A C V., the set of edges with both end-
points in A is E(A) = {{a,b} € E | a,b € A}. The set A induces
a subgraph G[A] = (A, E(A)).

A graph G = (V, E) is complete if all nodes are connected by an edge.
A clique is a set of nodes C' C V that induces a complete graph G[C]. An
edge clique cover is a set of cliques K, such that for every edge {z,y} € E,
there is a clique C' € K with z,y € C.

A set of nodes X C V' is an induced cycle, if its induced subgraph G[X] is a
cycle.

A graph G is triangulated or chordal, if for every cycle of four or more
nodes, there is an edge connecting two non-consecutive nodes in the cy-
cle. A triangulation of a graph G = (V,F) is a set of edges T, such
that (V, EUT) is a triangulated graph. A triangulation is minimal if no
proper subset is also a triangulation. If there is no triangulation 7" with
|T'| < |T|, then T is a minimum triangulation.

A node separator of a graph G = (V, E) is a set of nodes S C V whose
removal separates V' into disjoint sets V; and V5, such that there are no
edges between Vi and V5. We call Vi and V;, the components and the in-
duced subgraphs G[S U V] the leaves of S. A separator that is also a clique

5

6 CHAPTER 2. FUNDAMENTALS

is called a separation clique. Usually, we are interested in small separa-
tors for which |V;] & |V3|. To this end, we introduce a balance constraint:
Vi| < (1 +¢)[|V]/2], for some parameter ¢ > 0.

The graph partitioning problem is related to the node separator problem:
Find sets Vi, ..., Vi, such that ViU---UV, = V and V;NV; = 0 for ¢ # j. The
set of cut edges C = {{z,y} € E |z € V;,y € V;,1 # j} is called edge separa-
tor. A node x € V; with a neighbor y € Vj, i # j is a boundary node. The set
of boundary nodes is a node separator. In the graph partitioning problem,
the objective is usually to minimize the size of the edge separator. As in the
node separator problem, a balance constraint ensures that the partitions are
of similar size: Vi € {1,...,k} : |Vi| < (1 +¢)[|V|/k], with e > 0.

A clustering of a graph is a partitioning where the number of partitions
k is unknown and there is no balance constraint. Formally, we can define a
cluster as a set of nodes that are connected in some sense. However, there
is a wide variety of possible definitions [40].

In a graph G = (V, E), a matching is a set of edges M C E where no two
edges in M share a node, i.c., for all e;,e; € E e¢;Ne; = 0. An independent
set is a set of nodes I C V where no two nodes in [are connected by an
edge, i.e., for all x,y € I {z,y} ¢ E. A set K C V is a vertex cover if
every edge e € FE is incident to at least one node in K.

A reduction rule for some problem is a polynomial-time transformation
of a graph G = (V, E) into a reduced graph G' = (V', E'), where |V'| < |V/|
and |E’| < |E|. A solution to the problem on G’ can be mapped to a solution
on G. If an optimal solution on G’ is mapped to an optimal solution on G,
then the reduction rule is exact. Otherwise, it is inexact.

Often, we use contractions to reduce a graph. Contracting an edge
{z,y} € E merges the nodes = and y, summing the node weights. Any
parallel edges in the transformed graph are replaced by a single edge, again
summing the weights. Similarly, we contract a set of nodes X C V by
merging all nodes in X and replacing parallel edges with a single edge. Un-
contracting an edge or a set of nodes reverts the contraction.

2.1 Symmetric Factorization

Consider a linear system Ax = b, where A € C"*" and A is self-adjoint and
positive definite. Cholesky factorization decomposes A into a lower triangular
matrix L and its transpose L', such that A = LL". The system LL 'z = b
can then be solved by back and forward substitution. LDL-factorization
introduces an additional diagonal factor D and decomposes A = LDLT. In
LDL-factorization the matrix L is unit lower triangular.

2.2. NODE ORDERING 7

To compute the Cholesky factorization we write A as

A= (Z “g) (2.1.1)

where w € C* ', B € C»~Y*(=1_ Then column and row elimination yields
1 0\ [a 0 1wl
A= a 2.1.2
D6 s w)l T)
I’ A, L

where [is the identity matrix. The matrix A} can be further factorized and

we obtain
0\ /1 wl
A= (X/Ua]> (Owa) va 7). (2.1.3)
Va 0 B-%-/\0 [
Ly Ay LlT

By repeating this process on the submatrix B — % we obtain a factor-

ization LyLy--- LyILT ... LILT, where LiLy--- L, = L.

By omitting the factorization step in (2.1.3), we obtain an LDIL-
factorization. Then A = L{Ly--- L/ DL!T--- LT L}" with L = L{Ly--- L.
2.2 Node Ordering
Let G = (V, E) be a graph with vertices V' and edges FE.

Definition 2.2.1. The deficiency Dg(z) of a node x in a graph G is the set
of distinct pairs of nodes in N(x), that are not themselves neighbors:

Da(a) = {{a.b} [a,b € N(z), a£b, a ¢ NB)}.
When clear from the context we omit G and write D(x).

Definition 2.2.2. Eliminating a node x from a graph G = (V, E) results in
the elimination graph G:

Gm = (v \ {x}7Em>7

where E, := E(V \ {z}) U Dg(x).

8 CHAPTER 2. FUNDAMENTALS

The elimination graph is obtained by removing x and its incident edges
from G, and connecting the neighbors of x to form a clique.

The elimination graph obtained by eliminating a set of nodes X C V is de-
fined as

Gx = (.- ((Gey)ay) -+ s (2.2.1)
where z; € X, ¢« = 1,....m.

Definition 2.2.3. A node ordering of a graph G = (V, E) with n = |V| is a
bijection o : {1,2,...,n} — V.

An ordering o of a graph G defines a sequence of elimination
graphs GWG®? . G™, where

; (GO ifi=1,...,n
GO .= {G) o (2.2.2)

In G™, all nodes have been eliminated, i.e., G™ = (0, ().
The fill-in associated with an ordering is defined as

n

o(G,0) = Z |Deii-n (0(3))]. (2.2.3)

We denote the minimum fill-in ordering of a graph G by

X(G) = arg;nin{gb(G, o)}, (2.2.4)

with the minimum fill-in ®(G) = ¢(G, X(G)). Note that
O(G) > d(GY) > ... > (G D). (2.2.5)

An ordering o of a graph G generates a triangulation of G
T(0) := | Dgu-n/(o(i)). (2.2.6)
i=1

A minimum fill-in ordering X(G) generates a minimum triangulation
T(X(Q)), where ®(G) = |T(2(G))| [36]. A triangulation T is a minimal
triangulation if no proper subset of T is also a triangulation. An ordering
that generates a minimal triangulation is minimal. If G is triangulated,
then it has a perfect elimination order, i.e., ®(G) = 0.

2.2. NODE ORDERING 9

We use the following notation for node orderings:

O =19 Tp (2.2.7)
corresponds to
o(1) =z,
0(2)_ - (2.2.8)
a(n)' =T,

We write X(G,) if x is to be eliminated before the nodes in G,. When-
ever a set of nodes P = {p1,ps,...,pn} can be eliminated in any order, we
use P in the notation instead of pips---p,. For example

PY(Gp) (2.2.9)

is an ordering in which the nodes in P are eliminated in any or-
der before the nodes in Gp.

10

CHAPTER 2. FUNDAMENTALS

Chapter 3
Related Work

In this chapter, we give an overview over algorithms for the minimum fill-in
problem and describe two of them in more detail. Then, we shortly review
a common approach to computing separators and discuss reduction rules.
Lastly, we describe the label propagation algorithm.

3.1 Minimum Fill-In Orderings

Yannakakis has proven that the problem of finding a minimum fill-in ordering
is NP-complete [53]. Exact algorithms have been introduced in the context
of non-serial dynamic programming [7, 8|, but they are not practical for large
matrices due to their exponential running time [41]. For graphs with a perfect
elimination order, the problem can be solved in O(|V| + |E|) time [43].

Tinney and Walker [50] introduced a heuristic algorithm where the
next column to eliminate is selected based on the number of non-zeros.
This algorithm is known as the minimum degree algorithm, since the
node with the smallest degree is selected to be eliminated at each step
[41]. There have been several improvements to this algorithm, both
in its design and implementation [19, 20, 22].

A significant part of the minimum degree algorithm’s runtime is spent in
updating node degrees. Most of the improvements to the minimum degree
algorithm are thus focused on reducing the number of nodes to update [22].
Amestoy et al. [3] introduce an approximate minimum degree algorithm in
which the degree update is not performed exactly.

The minimum deficiency algorithm is a greedy algorithm similar to the
minimum degree algorithm [41, 50]: at every step the node with the smallest
deficiency is eliminated. If the graph to be ordered has a perfect elimina-
tion ordering, the minimum deficiency algorithm finds it. However, find-

11

12 CHAPTER 3. RELATED WORK

ing the deficiency of a node is expensive, so the algorithm is slower than
the minimum degree algorithm [41].

In 1973, George [18] introduced an algorithm to produce orderings for
regular finite element meshes, called nested dissection. This algorithm com-
putes a node separator, and then recursively orders the partitions before the
separator. George and Liu generalized the algorithm to work on arbitrary
graphs [21]. In practice, nested dissection is combined with algorithms such
as the minimum degree algorithm: once the subgraphs are small enough, they
are ordered by the minimum degree algorithm [5, 6, 29]. A similar approach
based on multisectors instead of bisectors is presented in [6].

In some variants of these algorithms, the notion of indistinguish-
able nodes is used to build a compressed graph, which speeds up the
computation of an ordering [4, 6, 26].

Node orderings from heuristic algorithms provide a basis to find min-
imal triangulations [25]. This, in turn, makes it possible to locally opti-
mize node orderings [9, 36]. While this does not guarantee that the re-
sulting orderings are minimum, the fill-in can be reduced significantly in
some cases [9]. Unlike a minimum triangulation, a minimal triangulation
can be found in polynomial time [25].

Node ordering algorithms also have applications in areas where
minimum triangulations are of interest, such as in Bayesian networks
[31] and computer vision [14].

For asymmetric matrices, reordering columns can lead to a reduced num-
ber of non-zeros in the matrix factors [15]. The minimum degree algorithm
for symmetric matrices is based on an algorithm proposed by Markowitz [34]
for computing the inverse of asymmetric matrices arising in linear program-
ming. A minimum node ordering for the symmetric matrix AT A can be used
as an ordering for the asymmetric matrix A, but algorithms that do not
rely on this product also exist, such as the column approximate minimum
degree algorithm introduced by Davis et al. [15].

3.2 The Minimum Degree Algorithm

The minimum degree algorithm (Algorithm 1) is a greedy algorithm to com-
pute a node ordering based on the degree of the nodes [22, 41]. At each
step of the algorithm the node with the smallest degree is eliminated from
the current elimination graph. Since the degree of a node corresponds to
the number of non-zeros in the corresponding matrix column, the degree of
an eliminated node gives an estimate of the operation count in the elimi-
nation step. Thus, the minimum degree algorithm minimizes the operation

3.2. THE MINIMUM DEGREE ALGORITHM 13

Algorithm 1: The minimum degree algorithm
input : An undirected graph G = (V| E)
output: An ordering o

MinDegree(G)

1141

2 GO+ @

3 while i < |V| do

4 T 4 arg min ¢ deggi-1 (@)

GO GV
o(i) < x

> Ot

Figure 3.1: For this graph, the minimum degree ordering is not optimal. Eliminating in
alphabetic order would incur no fill-in, but the minimum degree algorithm eliminates E
first.

count of the factorization in each elimination step. It also tends to min-
imize the fill-in, since the degree of a node z also gives an upper bound
for the fill-in, with |D(z)| = O(deg(z)?).

However, orderings from the minimum degree algorithm are not generally
optimal. The graph in Figure 3.1 has a perfect elimination order, and thus,
zero fill-in. However, the minimum degree ordering has fill-in, since node F is
eliminated first. In fact, the fill-in of a minimum degree ordering can be arbi-
trarily greater than the minimum fill-in [41]. See Figure 3.2 for an example.

A straightforward implementation of the minimum degree algorithm
would explicitly construct the elimination graph in every iteration. Since
the fill-in can be arbitrarily greater than the minimum fill-in, such an
implementation could require far more memory than is required for the
input graph. The generalized element model [19, 22, 48] provides a
representation of elimination graphs that solves this problem. In this
model, graphs are represented by an edge clique cover. A trivial edge
clique cover of a graph G = (V, E) is the set E.

14 CHAPTER 3. RELATED WORK

a’l a‘2 “ e an

Figure 3.2: A graph for which the minimum degree ordering has fill-in arbitrarily greater
than the minimum fill-in, adapted from [41]. C' is a clique with m > n nodes. Each node

a; is adjacent to each node in C. The minimum degree algorithm eliminates « first, which

leads to a fill-in of M= Ap ordering where all nodes a; are eliminated first has fill-in

2
m.

Eliminating a node x changes the edge clique cover. Let {C1,...,Cy} be
the cliques that contain x. In the edge clique cover of the elimination graph
Ch, ..., Cy are replaced by the clique (S, Ci) \ {z}.

Implementations based on this approach have the advantage that the
memory required to represent the elimination graphs never exceeds the
amount of memory required for the original graph.

There are several techniques to improve the running time of the mini-
mum degree algorithm [22]. They focus mostly on avoiding computing the
node degree in the elimination graph. Mass elimination and indistinguishable
nodes make it possible to eliminate multiple neighboring nodes at the same
time. FElement absorption reduces the number of cliques being processed: If
there are cliques C and Cs in the edge clique cover where C; C Cs, then C}
can be discarded. With multiple elimination an independent set of minimum
degree nodes is eliminated instead of just a single node. Lastly, incomplete
degree update delays the update of the degree of dominating nodes.

3.3 Nested Dissection

Let G = (V, E) be an undirected graph. Nested dissection (Algorithm 2)
computes a node ordering of a graph G by first computing a separator .S sepa-
rating V' into subsets V; and V3 and then recursively ordering G[V;], G[V3] and
G[S]. If the number of nodes in the graph is below some recursion limit, they
are ordered by some other algorithm, usually the minimum degree algorithm.

For square grids [18] and planar graphs [32] the number of non-
zeros introduced by a nested dissection ordering for a graph with n
nodes is bounded by O(n?log,n), where n is the number of variables

3.4. NODE SEPARATORS 15

Algorithm 2: Nested dissection
input : An undirected graph G = (V| E)
output: An ordering o

NestedDissection(G)
1 if |G| > recursion limit then
2 Vi, Vs, S < Separator(G)
3 foreach G’ in (G[V4], G[V3], G]S]) do
4 o’ < NestedDissection(G’)
5 L o<+ o0’

6 else
7 L 0 < MinDegree(G)

in the linear system. For square grids it can be shown that the tri-
angular factors have at least O(n?logyn) non-zeros [27]. However, no
such bound exists for general graphs [21].

On square grids finding the separator is straightforward. Omn planar
graphs it can be found in linear time [33]. In general, though, computing
the separator is the most time consuming step in nested dissection. Order-
ing a reduced version of the graph should improve the running time of the
algorithm, without degrading the quality of the ordering.

3.4 Node Separators

Multilevel algorithms are the most common approach to solving the node
separator problem on large graphs [10, 29, 44, 46]. These algorithms consist
of three phases. First, the input graph is transformed into a coarser graph.
After computing a separator on the coarse graph, the solution is transferred
back to the input graph and optimized locally.

In the coarsening phase edges are contracted. The edges to contract are
selected by computing a maximum weight matching. Nodes connected by an
edge in the matching are merged, and any parallel edges are replaced by a
single edge. This process is applied repeatedly, leading to coarser and coarser
graphs. To obtain a coarse graph that is representative of the input graph,
an edge rating function can be applied to guide the contraction.

Once the coarse graph is small enough, an initial separator is computed.
A common way is to use the boundary nodes of an edge separator with
partitions V; and V5. The set of boundary nodes in V; is a separator, so
is the set of boundary nodes in V5. In general, a vertex cover of the graph

16 CHAPTER 3. RELATED WORK

induced by the cut edges is a separator [39, 46]. This usually results in a
better separator than simply selecting the boundary nodes in V; or V5.

When uncontracting the matchings, the node separators are re-
fined by local search at each step.

3.5 Reduction Rules

Reduction rules play an important role in algorithms for NP-hard problems.
They were originally used to reduce the running time of brute force algo-
rithms, e.g., for the maximum independent set problem [49].

Reductions are fundamental to algorithms for fixed parameter tractable
problems [1]. A problem is fixed parameter tractable with parameter k, if
it has an algorithm with running time O(f(k)n¢), where n is the problem
size, ¢ is some constant and f(k) is an arbitrary function. The vertex cover
problem is fixed parameter tractable, if stated as a decision problem: is
there a vertex cover with at most k& nodes?

One approach to solve such problems is kernelization. Here, the graph
is reduced by reduction rules until a smaller graph is obtained. If this re-
duced graph is bounded by some function of the parameter, it is called a
kernel. Solving the problem on the kernel is equivalent to solving it on the
original graph. For the vertex cover, a kernel can be obtained by remov-
ing nodes = with deg(z) > k and their incident edges, because these nodes
are always in a vertex cover of size k [1, 11].

Branch-and-reduce methods offer another approach to NP-hard problems.
These algorithms reduce the problem instance using reduction rules, then
branch into multiple subinstances that are then solved recursively. Examples
for such methods include algorithms for the independent set problem [30, 51,
52], the vertex cover problem [2, 12] and the dominating set problem [28].

We already gave an example for a reduction rule for the vertex cover prob-
lem. A further example is the twin reduction used for maximum independent
sets [51] and minimum vertex covers [2]: in this context, twins are nodes a, b
with deg(a) = deg(b) = 3 and N(a) = N(b). Depending on N({a,b}), the
set {a,b} U N({a,b}) can either be removed or contracted. This is a special
case of the crown reduction for the vertex cover problem [13].

3.6. LABEL PROPAGATION 17

3.6 Label Propagation

Label propagation is an algorithm introduced by Raghavan et al. [40] to
detect clusters in graphs. Here, we only describe our implementation of
the algorithm, although other variations exist.

The algorithm begins by assigning a unique label to each node. Then,
the labels are updated repeatedly, until they no longer change. In each
step of the algorithm the nodes are updated in random order. Each node
is assigned the label that a maximum number of its neighbors share. Ties
are broken randomly. If a node’s label is already shared by a majority of
its neighbors, the label is not updated.

Label propagation allows for fast cluster detection. FEach iteration
takes time O(m) for a graph with m edges and the algorithm typically
converges after a few iterations [40].

18

CHAPTER 3. RELATED WORK

Chapter 4

Reduced Nested Dissection

We now introduce our nested dissection algorithm with reductions, which we
call reduced nested dissection. The chapter is structured as follows. After
outlining the algorithm we describe our exact reduction rules in Section 4.1
and our inexact reduction rules in Section 4.2. Section 4.3 introduces our
node ordering algorithm based on graph clustering.

Algorithm 3: Reduced nested dissection
input : An undirected graph G = (V| E)
output: An ordering o

ReducedNestedDissection((7)
1 G’ < ReduceGraph(G)
2 if |G| > recursion limit then
3 Vi, Vs, S < Separator(G)

4 foreach G’ in (G[V4], G[V2], G[S]) do

5 o' < ReducedNestedDissection(G’)
6 o+ oo’

7 else

8 L 0 < MinDegree ()

9 0 < map ordering ¢ from G’ to G

Algorithm 3 outlines our algorithm. We extend nested dissection
by transforming the input graph G to a reduced graph G’ and then
continuing as in nested dissection. After an ordering has been found
it is mapped back to the original graph G.

If the transformation of the graph is fast relative to the computation of
the separator and the transformed graph G’ is significantly smaller than G,

19

20 CHAPTER 4. REDUCED NESTED DISSECTION

Figure 4.1: A is a simplicial node, since its neighborhood is a clique. The dashed edges
lead to some other nodes in the graph.

then reduced nested dissection should be faster than pure nested dissection.
In Sections 4.1 and 4.2 we introduce our reduction rules.

4.1 Exact Reductions

A reduction rule is a polynomial time transformation from a graph G to a
reduced graph G’, such that a minimum ordering of G’ can be extended to a
minimum ordering of GG in polynomial time. For a minimum ordering of G,
¥(G"), there is a corresponding minimum ordering of G, ¥'(G).

4.1.1 Simplicial Nodes

Definition 4.1.1. A node x is simplicial if its neighborhood N (z) is a clique
(see Figure 4.1 for an example).

Theorem 4.1.2. No new edges are added during elimination of a simplicial
node .

Proof. Since N(x) is a clique, D(xz) = (. By definition of the elimination
graph (see Definition 2.2.2), no new edges are added when eliminating x. [

Theorem 4.1.3. Let G = (V, E) be a graph with a simplicial node x. The
ordering x%(G,) is a minimum fill-in ordering of G.

Proof. From Definition 4.1.1 it follows that D(z) = (). The fill-in associated
with eliminating x first is ¢(G, 23(G,)) = |D(x)| + ®(G,) = ®(G,). From
(2.2.5) it follows that ¢(G,2X(G,)) = (G). H

This allows us to eliminate all simplicial nodes first by the following proce-
dure:

4.1. EXACT REDUCTIONS 21

Indistinguishable Nodes Twins

’ \
/ \
/ \
’ \

) ()
oACIEING G

Figure 4.2: Examples for indistinguishable nodes and twins. Nodes I; and Iy are indis-
tinguishable, since they are neighbors and connected to all unlabeled nodes by an edge,
i.e., N[I;] = N[I3]. Nodes T} and T» are twins, since they are both connected to all
unlabeled nodes, but not to each other. N(T7) = N(T5).

\
\
\

/
/

|
I
I

1. Find any simplicial node z in G = (V, E).
2. Eliminate x from G and place it next in the node ordering.

3. If the elimination graph G, has simplicial nodes, repeat the procedure
for G.

If every elimination graph in the elimination sequence o has at least
one simplicial node, then ¢(G,0) = 0. In this case, o is a perfect
elimination ordering of . Graphs that admit such an ordering are
called chordal or triangulated graphs [41, 42].

Reduction 1 (Simplicial Node Reduction). Given a graph G = (V, E') and a
simplicial node x € V', construct a new graph G' = G[V'\{z}]. ®(G) = ®(G’)
and zX(G") is a minimum fill-in ordering of G.

4.1.2 Indistinguishable Nodes
Definition 4.1.4. Two nodes a and b are indistinguishable if N[a] = NJb].

Figure 4.2 shows an example for indistinguishable nodes. We now show
that such nodes can be eliminated together: if a and b are indistinguishable
nodes, then there exists a minimum fill-in ordering x; - - - z;abx; 1 - - - x4.

Lemma 4.1.5. If a, b are indistinguishable nodes in a graph G, then a and
b are indistinguishable in any elimination graph G, for x ¢ {a,b}.

22 CHAPTER 4. REDUCED NESTED DISSECTION

Proof. Let x € N(a)\{b} = N(b)\{a} be eliminated from G. In the elimina-
tion graph Ne, (a) = (N(a)\ {z}) UN(z) and Ng, (b) = (N(b)\ {z}) UN(z)
Since a € Ng,(b) and b € Ng,(a), Ng,[a] = Ng,[b]. Thus, a and b are
indistinguishable in G,.

If a node x with x ¢ N(a) and x ¢ N(b) is eliminated from G, the
neighborhoods of a and b do not change, since a,b ¢ N(z). In the elimination
graph Ng,[a] = Ng,[b]. Thus, a and b are indistinguishable in G,. O

Lemma 4.1.6. Let a, b be indistinguishable nodes in a graph G = (V, E).
If a¥(G,) is a minimum ordering of G, then abX((Ga)p) is also minimum

ordering of G. ¢(G,aX(G,)) = ¢(G,aby((Ga)p)) = ©(G).

Proof. Since Ngla] = Nglb], Ng,[b] = Ng(a). Due to the elimination process,
Ng, (b) is a clique. Thus, b is simplicial in G,. With Theorem 4.1.3, b3((G,)s)
is a minimum ordering of G,. Thus, if a3(G,) is a minimum ordering of G,
ab¥((Gy)p) is a also minimum ordering of G. O]

Theorem 4.1.7. Let G = (V, E) be a graph with a set of nodes A C V', where
V ai,a; € A, Nla;| = Nla;]. There is an ordering o' = xy -+ x; ATy -+ - Xy,
where V'\ A = {x1,...,x4}, such that ¢(G,0’) = ®(G).

Proof. Lemma 4.1.5 implies that all pairs of nodes in A are indistinguish-
able in all graphs in the elimination sequence. There is a graph G(™ in
the elimination sequence with a minimum ordering aZ(G&m)), a € A. By
Lemma 4.1.6, a; - - - akE(GELXm)) is also a minimum ordering of G(™). In fact,
any AE(GX")) is a minimum ordering of G™). Thus, G has a minimum
ordering of the form of o’]

Theorem 4.1.7 implies that indistinguishable nodes can be treated as
one node: if a node is removed, all its indistinguishable nodes can be re-
moved next. To obtain a reduced graph G’, we contract a set of indis-
tinguishable nodes S in G to one node z.

Reduction 2 (Indistinguishable Node Reduction). Given a graph
G = (V, E) with indistinguishable nodes a,b € V, construct a new graph
G' = G(V \ {b}). Replacing a in (G’) by ab results in a minimum ordering
of G.

Note, that in the reduced graph G’, the deficiency of any node neighbor-
ing a set of indistinguishable nodes is different from that of the correspond-
ing node in the original graph G. Thus, we have to optimize the ordering
in G’ not in terms of the deficiency of a node in G’, but in terms of the
deficiency of the corresponding node in G.

4.1. EXACT REDUCTIONS 23

Indistinguishable nodes are commonly used to speed up the minimum de-
gree algorithm [19, 20, 22]. In implementations of the minimum degree algo-
rithm based on the quotient graph model, indistinguishable nodes are repre-
sented by a single node, similar to Reduction 2. This reduction is also used in
other variants of nested dissection and the minimum degree algorithm [4, 26].

4.1.3 Twins
Definition 4.1.8. Two nodes a and b are twins if N(a) = N(b).

Figure 4.2 shows an example of twins. Similar to indistinguishable
nodes, twins can be eliminated together.

Theorem 4.1.9. Let a, b be twins in a graph G = (V,E). There ex-
ists an ordering o' = xy---x;abriyy - -2y, with x; € V \ {a,b}, such that

o(G,0') = ¢(G).

Proof. 1f a node © € N(a) = N(b), is eliminated, a and b form a clique in
the elimination graph G,. Thus, a and b are indistinguishable in G, and
Theorem 4.1.7 holds.

If a node © ¢ N(a) U {a,b} is eliminated, the neighborhoods of nodes a
and b do not change, i.e., Ng, [a] = Ngla] and Ng, [b] = Ng[b]. Thus, a and
b are twins in G,,.

If a is eliminated, N¢, (b) is a clique in the elimination graph G, and b is
simplicial in G,. With Theorem 4.1.3, bX((G,)s) is a minimum ordering of
G, and ab¥((G,)p) is @ minimum ordering of G. O

We can treat twins similarly to indistinguishable nodes: we obtain a
reduced graph by contracting twins. As with Reduction 2, the deficiency of
a node in G’ is different to the deficiency of the corresponding node in G.

Reduction 3 (Twin Reduction). Given a graph G = (V,E) with twins
a,b € V, construct a new graph G' = G[V \ {b}]. Replacing a in 3(G’) by
ab results in a minimum ordering of G.

4.1.4 Path Compression

We now show that a path of nodes with degree 2 can be eliminated together.
More formally, let P = {ay,as,...,a;} be a path in a graph G = (V. E)
with deg(a;) = 2 for all a; € P. There is a minimum fill-in ordering
Y = xy-@iaq - apmigy - xp, where V\ P = {xq,...,24}.

24 CHAPTER 4. REDUCED NESTED DISSECTION

We prove this by distinguishing three cases based on which nodes are
separation cliques, and using the relationship between minimum triangula-
tions and minimum fill-in orderings. Corollary 1 and Proposition 2 from [41]
are central to our proof and we restate them here.

Lemma 4.1.10 (Corollary 1 from [41]). Let G = (V, E) be a graph with
separation clique S with components C1,Cy, ..., Cy. Any minimum triangu-
lation T of G contains only edges e = {x,y} € T with x and y in the same
component C;, or edges with e = {x,y} € T with x € C; andy € S.

Lemma 4.1.11 (Proposition 2 from [41]). Let C' = (V, E) be a cycle with
V| > 3 nodes. Any ordering of C' is a minimum fill-in ordering.

Furthermore, we need to show that nodes with degree 2 in induced cycles
of four or more nodes can be eliminated first.

Lemma 4.1.12. Let G = (V,E) be a graph with a node a € V where
deg(a) =2, N(a) ¢ E and {a} is not a separation clique. Then, a¥(G,) is
a minimum ordering of G.

To prove Lemma 4.1.12 we establish that there exists a minimum trian-
gulation that does not contain an edge to such a node a.

Lemma 4.1.13. Let G and a be as in Lemma 4.1.12. There erists a mini-
mum triangulation T of G, with N(a) € T and {a,xz} ¢ T for allx € V.

Proof. Let C ={C4,...,C,} be the set of induced cycles that contain a, i.e.,
for all i, a € C; and G[C;] is a cycle. Due to the assumptions on a, N(a) C C;
for all 4.

By Lemma 4.1.11, for all C; € C, there exists a minimum triangulation
T; with N(a) € T;. Thus, there exists a minimum triangulation T of G with
N(a) eT.

N(a) is a separation clique with components {a} and V' \ ({a} U N(a))
in the triangulated graph G = (V,EUT). By Lemma 4.1.10 there exists no
edge {a,z} € T.

This implies N(a) € T, {a,2} ¢ T and T is minimum. O

Proof of Lemma 4.1.12. With Lemma 4.1.13 there exists a minimum trian-
gulation 7' of G with N(a) € T and {a, z} ¢ T. a is simplicial in the
triangulated graph G = (V, EUT) and aX(G,) is a minimum ordering of G.
This implies that aX(G,) is a minimum ordering of G. Note that eliminating
a from G adds the edge N(a) to the elimination graph. O

With these results we can now prove our original statement.

4.1. EXACT REDUCTIONS 25

Case 1

Figure 4.3: Examples for the three cases in the proof of Theorem 4.1.14. Thick nodes
are nodes in P. N(P) is marked with dashed rectangles. Dashed edges lead to some other
nodes in the graph.

26 CHAPTER 4. REDUCED NESTED DISSECTION

Theorem 4.1.14. Let G = (V,E) and P = {a1,...,ar} C V such that
G|P] is a path graph and ¥ a € P deg(a) = 2. Let N(P) = {ag, a1} and
N(a;) ={aj-1,a;41}, i =1,... k. There exists an ordering

!/
g :xl"‘$i@1"'akxi+1"'$é,

where V\ P ={x1,...,x,}, such that ¢(G,0’) = &(G).

Proof. G can be decomposed into non-disjoint graphs G’ := G[V \ P] and
G" := G[P U N(P)], such that

G=GUGqg". (4.1.1)
We distinguish three cases (see Figure 4.3 for examples):

Case 1: If ag = ax41 or ag € N(ag41), then G” is a cycle and N(P) is a sepa-
ration clique with leaves G’ and G”. Let T” be a minimum triangulation
of G’ and T” be a minimum triangulation of G”. By Lemma 4.1.10,
T"UT" is a minimum triangulation of G. Since any ordering of G”
generates a minimum triangulation of G” (by Lemma 4.1.11), P3(GY)
is a minimum ordering of G” and PX(Gp) is a minimum ordering of

G.

Case 2: If ag # agy1, and {ao} and {ax,1} are separation cliques, then all
nodes in P are also separation cliques. By Lemma 4.1.10, there are no
edges {a;,a;}, for all ¢ # j in a minimum triangulation of G.

Let ¥ be any minimum fill-in ordering of G' and let G™ be the graph
in the elimination sequence from which a € P is eliminated. Node a
is simplicial in G, otherwise T'(X) would not be a minimum trian-

gulation. Since all a € P are separation cliques and deg(a) = 2 in G,
deg(a) =1 in G™).

Without loss of generality assume that a; is eliminated before all other
nodes in P. Let G(™) be the graph in the elimination sequence from
which a; is eliminated. If deg(a;) = 1 in G™V), then deg(ay) = 1 in
Gg;“). Repeating this argument for all a; € P proves that PE(GE;”I))
is a minimum ordering of G and ¥ is of the form of o’.

Case 3: If {ag}, {ax,1} and N(P) are not separation cliques, then any a € P
satisfies the conditions in Lemma 4.1.12. In G,, {ao}, {ax41} and N(P)
are not separation cliques. Repeating the argument for GG, leads to a
minimum ordering PX(Gp).

4.2. INEXACT REDUCTIONS 27

In Case 1 and Case 3, there exists a minimum ordering a; - - - agxy - - - Tp.
In Case 2, there exists a minimum ordering z; - - - x;a1 - - - @241 - - - 4. Both
orderings are of the form of o’. O

Since such sets of nodes P can be eliminated together, we can contract
them to a single node. It is possible that in a minimum elimination sequence
of a graph G, the degree of a; € P becomes 1. Then, P has to be ordered
as ajas---a, to obtain a minimum ordering.

Reduction 4 (Path Compression). Given a graph G = (V, E) with a set
of nodes P = {ay,...,a;}, where G[P] is a path graph, N(P) = {ao, a1}
and V a € P deg(a) = 2, construct a new graph G' = (V \ {ag, ..., a}, £'),
where E' = (E\ E(PU{ay+1})) U {{a1,ax11}}. Replacing a; in X(G’) by
aias - - - ag yields a minimum ordering of G.

4.2 Inexact Reductions

An inexact reduction rule is a transformation from a graph G to a reduced
graph GG, where minimum ordering of G’ is not guaranteed to correspond to
a minimum ordering of G. A minimum ordering of G', ¥(G’), corresponds
to an ordering of G, ¢'(G), where ¢(G,0'(G)) > (G).

While such reductions do not guarantee a minimum ordering, they
are useful in reducing the graph size and thus the running time of
the reduced nested dissection. In practice, they have little effect on
the quality of the node orderings.

4.2.1 Degree-2 Elimination

In a graph without simplicial nodes, the minimum degree is 2. These
nodes would be eliminated first by the minimum degree algorithm,
so we eliminate them from the graph.

Inexact Reduction 1 (Degree-2 Elimination). Given a graph G = (V, E)
and any node x with degree 2, construct the elimination graph G,. The
potentially non-minimum ordering of G is 23(G,). The reduction is applied
recursively until no nodes with degree 2 are left.

Just as with the minimum degree algorithm, degree-2 elimination can
lead to a non-minimum ordering (see Figure 4.4). In some cases, degree-2
elimination can lead to a worse ordering than the minimum degree algorithm.
Consider node D in Figure 4.4. When A, B and C are eliminated, D has

28 CHAPTER 4. REDUCED NESTED DISSECTION

Figure 4.4: Applying degree-2 elimination to this graph can lead to a non-minimum
ordering: the order [A, B,C, D, E,...] has lower fill-in than the order [E, A, B,C, D, ...],
but both are possible orderings from degree-2 elimination.

degree one and D and E can be eliminated without fill-in. However, degree-2
elimination eliminates E before D, leading to a higher fill-in.

The proof of Theorem 4.1.14 has interesting implications on the
exactness of degree-2 elimination.

Corollary 4.2.1. Let G = (V, E) be a graph. If x € V is part of any cycle
C CV and deg(z) =2, 2X(G,) is a minimum ordering of G.

Proof. Node x is part of a cycle and thus not a separation clique. Either case
1 or 3 of Theorem 4.1.14 holds, which implies that 23(G,) is a minimum
ordering of G. [

Corollary 4.2.2. Let G = (V, E) be a graph. Let {x} C V be a separation
clique and deg(z) = 2. Let ¥ be a minimum fill-in ordering and G be the
graph in the corresponding elimination sequence from which x is eliminated.
x is simplicial in G,

Proof. Since x is a separation clique, Case 2 of Theorem 4.1.14 holds and
thus, z is simplicial in G™. [

Corollaries 4.2.1 and 4.2.2 imply that degree-2 elimination is exact when
degree-2 nodes that are part of a cycle are eliminated. In some graphs,
degree-2 elimination can therefore be exact.

If all nodes with degree 2 that are not separators can be de-
tected efficiently, we can introduce an exact reduction that only
eliminates nodes with degree 2.

4.2.2 Triangle Contraction

Theorem 4.2.3. Let G = (V, E) be a graph, where¥ x € V' deg(x) > 3. Let
a,b €V be two neighboring nodes (i.e., {a,b} € E), with deg(a) = deg(b) = 3

4.3. NODE ORDERING WITH GRAPH CLUSTERING 29

(—o—o—2)

Figure 4.5: Nodes A, B and C, D satisfy the condition in Theorem 4.2.3. If A is eliminated
in the minimum degree algorithm, deg(B) = 3 in the elimination graph, so B could be
eliminated next. However, if C is eliminated first, deg(B) = 4 in the elimination graph
and the condition does no longer hold for A and B.

and |[N(a)NN(b)| > 1. Nodes a and b can be eliminated first by the minimum
degree algorithm.

Proof. Since all nodes in GG have at least degree 3, a can be eliminated first
by the minimum degree algorithm. There are two cases:

Case 1: If |[N(a) N N(b)| = 1, then degq (b) = 3, so b can be eliminated
after a.

Case 2: If [N(a) N N(b)| = 2, then a and b are indistinguishable.
O]

We can reduce the graph by contracting neighboring nodes of degree 3
if they share at least one neighbor. However, this only leads to a minimum
ordering if the degree of the nodes does not change during the elimination
process. If a node x € N(a),z ¢ N(b) is eliminated before a or b and
deg(a) = 4 in the elimination graph, the ordering will no longer be minimum.

Inexact Reduction 2 (Triangle Contraction). Given a graph G = (V, E)
and nodes a, b with deg(a) = deg(b) = 3 and |N(a) N N(b)| = 1, construct a

new graph G' = (V' \ {a}, E'\ (Uzen(a){@: 7}) Uzen(a) {z,b}). Replacing b by
ba in ¥(G') yields a potentially non-minimum ordering of G.

4.3 Node Ordering with Graph Clustering

Our node ordering algorithm based on graph clustering is outlined in Al-
gorithm 4. We first cluster the input graph by label propagation. Then,

30 CHAPTER 4. REDUCED NESTED DISSECTION

Algorithm 4: Node Ordering with Graph Clustering
input : An undirected graph G = (V, E)
output: An ordering o

ClusteredOrdering((:)
// Find clusters in the graph
1 C < LabelPropagation(G)
// Order the contracted graph
2 G’ < contract clusters C' in G
3 0’ < ReducedNestedDissection(G’)
// Order the subgraphs
4 foreach cluster ¢; in C, in order determined by ¢’ do
5 L 0 < o ReducedNestedDissection(G[¢])

we contract the clusters and order the resulting graph by reduced nested
dissection. Each cluster is also ordered individually by reduced nested dis-
section. The orderings of the clusters are then arranged in the order of the
contracted graph to yield the ordering of the input graph.

With this algorithm we aim to obtain orderings in shorter time than with
(reduced) nested dissection. Ordering the graph after contracting clusters
should be faster than ordering the uncontracted graph. The subgraphs in-
duced by the clusters will be relatively small and may often fall under the
recursion limit. Since the nodes in these clusters are highly connected, simpli-
cial node and indistinguishable node reduction should be very effective here.

This algorithm works under the following assumption: in a minimum
fill-in ordering we expect clusters to be ordered together, i.e., they would
form a block in the corresponding permuted matrix. Thus, we expect that
ordering clusters independently will lead to a good ordering. By ordering the
contracted graph we also take the connections between clusters into account.

Chapter 5

Experimental Evaluation

We now describe our experimental evaluation of our algorithms. Section 5.1
outlines our implementation of the reduced nested dissection algorithm. In
Section 5.2 we describe our test instances, method of evaluation and setup.
Section 5.3 discusses the results of our experiments.

5.1 Implementation Details

We implemented reduced nested dissection in C++ within version 2.10 of the
KaHIP graph partitioning framework [45].

Our implementation of the minimum degree algorithm is based on the
generalized element model, but does not make use of the running time im-
provements described in Section 3.2.

To apply simplicial node reduction (Reduction 1), we iterate through
nodes in order by non-decreasing degree. To test if node x is simplicial,
we iterate through the neighbors y € N(x). If deg(y) < deg(x), x is not
simplicial. If |N(y) N N(z)| = deg(x) — 1, we move on to the next neighbor,
otherwise, x is not simplicial. When a node is found to be simplicial, we mark
it as removed and adjust the degrees of its neighbors accordingly. Removed
nodes are ignored when testing the other nodes. The order in which simplicial
nodes are found yields their elimination order.

Indistinguishable node and twin reductions (Reductions 2 and 3) are sim-
ilar in their implementation. To detect all indistinguishable nodes, we first
compute a hash of the closed neighborhood of each node x; as

he(zi) = > J. (5.1.1)
y;EN|[z;]

We then sort the hashes and iterate through the list. Whenever we find two
nodes x,y with equal hashes, we test if deg(z) = deg(y) and Nx] = NJy|.

31

32 CHAPTER 5. EXPERIMENTAL EVALUATION

We use the same process to detect twins, but use the open neighborhood
instead of the closed neighborhood. The sets of twins and indistinguish-
able nodes are contracted. When mapping the ordering from the reduced
graph to the input graph, we simply replace the contracted node by the
corresponding set of twins or indistinguishable nodes.

For path compression (Reduction 4) we detect paths starting from
a node with degree 2 by recursively adding neighbors with degree 2.
These paths are contracted. = When mapping the ordering from the
reduced graph to the input graph, we order the paths from the end
whose neighbor has been eliminated first.

To apply degree-2 elimination (Inexact Reduction 1), we first detect paths
as in path compression. We build the reduced graph by copying nodes that
are not eliminated. When adding the edges, we connect to the neighborhood
of a path instead of to the path itself. Parallel edges are merged into one.
The eliminated nodes are ordered arbitrarily.

We detect set of nodes A to be contracted in triangle contraction (In-
exact Reduction 2) by the following procedure:

1. Let = be some node with deg(xz) = 3. Add z to A.

2. If « has a neighbor y with deg(y) = 3 and |N(z) N N(y)| > 1, add =
and y to A. Let a € (N(z) N N(y)).

3. Let z € N(y),z ¢ A. If deg(z) = 3 and a € N(z), add z to A.
Otherwise, stop.

4. Repeat step 3 with the neighbors of z.

In the ordering of the input graph, nodes in A are ordered as they are added to
A.

When contracting nodes the degree of the nodes and their neigh-
bors change. To account for this, we do not use the node degree
in the minimum degree algorithm, but an adjusted degree based on
the node weights of the neighborhood:

degqi(z) = Y wy+ (we — 1) + o, (5.1.2)
YEN(z)

where w, is the weight of node . A node with weight m represents m nodes
in the input graph. Thus, summing up the node weights of neighboring nodes
yields the size of the neighborhood in the original graph. w, — 1 counts the
edges to the indistinguishable neighbors of node x. When contracting twins,
counting these edges overestimates the degree, so we introduce a contraction

5.2. EXPERIMENTAL SETUP 33

Indistinguishable Nodes Twins

(1,3) (1,1 (1,4) (1,3)

(1,1) (1,4)

(3,4) (3,2)

Figure 5.1: Examples for the adjusted degree for indistinguishable nodes and twins.
Above: uncontracted graphs, below: contracted graphs. The nodes in the contracted
graphs are labeled with the node weight and the adjusted degree. Nodes C, D and E
are indistinguishable. Nodes I, J and K are twins. In the case of indistinguishable nodes
ccpe = 0and degadj(C’DE) = wA+wB+(wCDE—1)+CCDE = 1—|—1+(3—1)—|—0 = 4. In the
case of twins c¢;jx = —(wrjx — 1) and deg,q;(IJK) = wg +wy + (wrjx — 1) +crjx = 2.

offset ¢,. For a node x that represents indistinguishable nodes ¢, = 0. If x
represents a set of twins, then ¢, = —(w, — 1). Figure 5.1 gives an example
of the adjusted degree for indistinguishable nodes and twins.

5.2 Experimental Setup

We evaluate our algorithm on undirected graphs from [35]. These
graphs include social networks, citation networks and web graphs. Ta-
ble 5.1 lists their basic properties. We also use a subset of graphs from
Walshaw’s graph partitioning archive [47].

We evaluate our orderings with the gotst-program from the software
package Scotch (version 6.0.6) [38]. This program performs a Cholesky fac-
torization and reports the number of non-zeros in the matrix factors and
the operation count of the factorization. We compare our node orderings
against orderings from Metis (version 5.1.0) [29].

34

CHAPTER 5. EXPERIMENTAL EVALUATION

Graph

Number of Nodes

Number of Edges

amazon-2008
as-22july06
as-skitter
citationCiteseer
cnr-2000
coAuthorsCiteseer
coAuthorsDBLP
coPapersCiteseer
coPapersDBLP
email-EuAll

enron

eu—-2005

in-2004
loc-brightkite_edges
loc-gowalla_edges
p2p-GnutellalO4
PGPgiantcompo
soc—-31lashdot0902
web-Google
wiki-Talk
wordassociation-2011

735323
22963
554930
268 495
325557
227320
299067
434102
540 486
16 805
69 244
862 664
1382908
56 739
196 591
6405
10680
28550
356 648
232314
10617

3523472
4 846
5797663
1156 647
2738969
814134
977676
16 036 720
15245729
60 260
254449
16 138 468
13591473
212945
950 327
29215

24 316
379445
2093 324
1458 806
63 788

Table 5.1: Properties of the social networks from [35].

5.2. EXPERIMENTAL SETUP

Graph Number of Nodes Number of Edges
3elt 4720 13722
4elt 15606 45878
add20 2395 7462
add32 4960 9462
bcsstk29 13992 302748
bcsstk30 28924 1007284
bcsstk31 35 588 572914
bcsstk33 8738 291583
crack 10240 30380
cséd 22499 43 858
cti 16 840 48 232
data 2851 15093
fe_4elt2 11143 32818
fe_pwt 36519 144794
fe_sphere 16 386 49152
memplus 17758 54 196
uk 4824 6837
vibrobox 12328 165250
whitaker3 9800 28989
wing nodal 10937 75488

Table 5.2: Properties of the graphs from Walshaw’s benchmarking archive [47].

36 CHAPTER 5. EXPERIMENTAL EVALUATION

Reduction Abbreviation

Simplicial Node Reduction
Indistinguishable Node Reduction
Twin Reduction

Path Compression

Degree-2 Elimination

Triangle Contraction

Ol W N — O

Table 5.3: Reductions and their abbreviations in this text.

We compiled our implementation with version 6.3.0 of g++, with
the optimization level set to -03.

All running times we report were measured on a machine with two In-
tel Xeon E7-8867 v3 processors (16 cores, 2.5 GHz) and 1000 GB RAM.

We run our code sequentially on a single core.

5.3 Experimental Results

Here, we describe the results of our experiments. First, we evaluate the effect
of reductions on the quality of nested dissection orderings and on the running
time of nested dissection. In Sections 5.3.2 and 5.3.3 we study how the choice
of recursion limit and imbalance influences quality and running time.

In all these experiments we apply the reductions once in the chosen order
on each recursion level. The reduced graph we obtain in this way may be fur-
ther reduced by repeating the reductions. We can apply them exhaustively,
i.e., until the graph can no longer be reduced. In Section 5.3.4 we evaluate
how exhaustive application of reductions affects the quality of the orderings.

Lastly, in Section 5.3.5 we present the results from our -cluster-
ing based node ordering algorithm.

Unless otherwise noted, we use the ecosocial preconfiguration of KaHIP
to compute node separators, with the imbalance set to 20%. The default
recursion limit is set to 120 nodes, which is also the default in Metis.

Our implementation reads the order of reductions as a list of num-
bers. In this section, we use the same notation. To give an example,
034 would refer to an order of reductions where simplicial node re-
duction is applied first, followed by path compression and degree-2
elimination. See Table 5.3 for reference.

5.3. EXPERIMENTAL RESULTS 37

5.3.1 Combinations of Reductions

Here, we compare reduced nested dissection with nested dissection without
reductions in terms of the quality of its orderings and in terms of its running
time. For each of the graphs listed in Table 5.1 we ran reduced nested
dissection with different combination of reductions, as listed below. We also
compare our results against orderings obtained from Metis.

We use the following combinations:

01: Simplicial node and indistinguishable node reduction.

01 2: Simplicial node, indistinguishable node and twin reduction.
0 3: Simplicial node reduction and path compression.

04: Simplicial node reduction and degree-2 elimination.

045: Simplicial node reduction, degree-2 elimination and triangle contrac-
tion. Note that triangle contraction requires degree-2 elimination.

01234: All reductions except triangle contraction. Note that combining
path compression and degree-2 elimination in this way is not neces-
sarily useful, since the compressed paths are eliminated by degree-2
elimination.

01235: All reductions except degree-2 elimination. Note that this com-
bination is not expected to perform well, since triangle contraction
requires degree-2 elimination.

01245: All reductions except path compression.

01345: All reductions except twin reduction.

02345: All reductions except indistinguishable node reduction.
0123: Only exact reductions.

There are two reasons for always starting with simplicial node reduction:
first, simplicial node reduction finds a perfect elimination order if a graph is
triangulated. Second, some of the reductions only work if simplicial nodes
are removed (see Sections 4.2.1 and 4.2.2). Degree-2 elimination assumes
that there are no nodes of degree 1, which are removed by simplicial node
reduction. Triangle contraction can only be applied in combination with
degree-2 elimination, and thus also requires simplicial node reduction.

38 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.2 (on Page 40) shows the improvement in the number of non-
zeros over nested dissection. In terms of the median, the combination 045,
012 and 01245 lead to the best results, with an improvement of ~ 2.5%.
The combination 01235 leads to worse results than nested dissection with-
out reductions, as expected. In terms of operation count, the combina-
tion 03 performs best, with a median improvement close to 5% (see Fig-
ure 5.3). It appears that in general the reductions influence the operation
count more than the number of non-zeros.

These results are summarized in Table 5.4. It should be noted that ex-
act reductions do not guarantee node orderings with lower number of non-
zeros or operation count. Since both nested dissection and the minimum
degree algorithm are heuristics, this is not unexpected. The minimum de-
gree algorithm in particular is very sensitive to the initial order of the matrix
[22], which a reduction can change significantly.

Figure 5.4 shows the improvement in running time over nested dis-
section without reductions. All reduction orders improve the running
time of nested dissection. In only nine cases is reduced nested dissection
slower than nested dissection. The largest improvement is gained for
the graph coPapersCiteseer and the reduction combination 01345
with 95.6%. For this graph, nested dissection without reductions takes
17175 seconds; reduced nested dissection takes 751.4seconds. For the
combination 045 the running time is improved by 36.4% in the median.
For the combination 012 it is improved by 44%.

Table 5.5 lists the graph sizes after application of reduction rules be-
fore any separators are computed. Simplicial node reduction has by far the
greatest impact, on average reducing the graph to 57% of its original size.
Degree-2 elimination, twin reduction and indistinguishable node reduction
reduce the graph size by an additional 6%-13%. Path compression and tri-
angle contraction only lead to small reductions. Overall, the graphs are
reduced to approximately half their original size. Table 5.6 shows the aver-
age reduction in graph size over all applications of the reduction rules. Path
compression and triangle contraction contribute more to reducing the graphs
in later stages of the algorithm. Simplicial node reduction and degree-2
elimination reduce the graphs the most.

On the social networks, our implementation of nested dissection performs
slightly better than Metis. In the median, the number of non-zeros for Metis
is 1.56% greater than for our nested dissection without reductions (see Ta-
ble 5.4). The operation count is even 5.08% greater. For further comparison,
we applied reduced nested dissection to the graphs in Table 5.2. Here, we
used the eco preconfiguration for computing node separators. Table 5.7 re-
ports the number of non-zeros and operation count for reduction orders 01 2

5.3. EXPERIMENTAL RESULTS 39

and 045. For eleven graphs, at least one reduction order yields a lower
number of non-zeros. In terms of operation count, reduced nested dissection
performs better for thirteen graphs. Three graphs stand out: add20, add32
and memplus. add20 and memplus are chordal graphs and are reduced com-
pletely by simplicial node reduction. For these graphs, we obtain a perfect
elimination order. add32 is reduced to 0.8% of its original size by simplicial
node reduction, which improves the quality of the ordering.

40 CHAPTER 5. EXPERIMENTAL EVALUATION

Metis o o—o oua»-m o o o

0123 00 O <o.0mo O D '} o
02345 o—o—@o—m—o
01345 oo—o«@—o—o o o

01245 00 O ou:-au o) o o
n
c
001235 oo oo
B
‘301234 o ouom—o(!o 0—0 o o
] [}

045 o ooodo fhooo

04 o oo—o—@n‘o oo

03] o oa@o-o ° o
012 oo—o—a@o—ooo o

01 o o

o =3 o
number of non-zeros relative to no reductions, in percent

Metis—o+o—+ oo %o ow +

0123 o—o0—0 I 0o —
02345 ————a oo o b oo o do oo
01345 ————o0——o0 coodo o o
01245 oo boof 0o oo

o o

.§01235—o—m—+ o o *oo o o + o
-0'301234—0—0)—430 o oo*@o o + © °

045 —o0——o0—® o do odo—oo——o0 o

01—0—0«:# Voooo {{m{o—oo | | o

=)
o o Lo S

number of non-zeros relative to no reductions, in percent

-10 |
15 |

Figure 5.2: Number of non-zeros for different reduction combinations, relative to the
number of non-zeros for nested dissection without reductions. The boxes extend from the
first to the third quartile, the bar represents the median. Above: all points, below: zoomed
plot. Combination 02345 and 01235 lead to more non-zeros in the median than nested
dissection without reductions. All other combinations reduce the number of non-zeros.

5.3. EXPERIMENTAL RESULTS 41

Metis

0123

02345

o]
Q
q

ﬁ
o

B
0
o]
o]
o]
[e]
[e]

01345 o o

01245

01235 oo oo

ons

01234 o

reduct

045 o

o
o o

200 |

Metis o * 0 0 ®

0123

02345

01345

01245

ons

01235

01234

reduct

045

04

03

01

O 00 %

(X)#) (o) [e]

————F

O 00O

—@—o+ro

(o]

%«;7 °

boo—o

20 |

o
2 o 2

operation count relative to no reductions, in percent

Figure 5.3: Operation count for different reduction combinations, relative to the oper-
ation count of nested dissection without reductions. The boxes extend from the first to
the third quartile, the bar represents the median. Above: all points, below: zoomed plot.
Only combination 01235 leads to a higher operation count in the median than nested
dissection without reductions.

42 CHAPTER 5. EXPERIMENTAL EVALUATION

0123 o—o—o—o—o—+>o 0%0 00 c+—o—o—o—o—o
02345 o—o—o—co-+oo oo%o oo o +—o~o—o—o—o

01345

——
01245 o—o—co—+ oo +o o ® +—o—o—o—o—o
oo bo——o0o0—0

01235

01234

—

045 o9 o b o 00 boc0o0—
—t
—d

reductions

04

03

012 o—o—®—0—+ooo c%oo O%—O—O—O—O—O
01 o—o—o—o—o—+o © %oo o o +—cco—o—o
~

T} [} o

25 |

running time relative to no reductions, in percent

Figure 5.4: Running time for different reduction combinations, relative to the running
time of nested dissection without reductions. The boxes extend from the first to the
third quartile, the bar represents the median. With all combinations, reduced nested
dissection is faster than nested dissection without reductions, except for some graphs.
The combination 04 yields the best improvement in terms of median.

43

5.3. EXPERIMENTAL RESULTS

‘P19
Ul pajySIYSIY oIt UWIN[OD Yded Ul SoN[eA 4S9 Y, ‘SO[I}Ienb oy} pue Uesw oY} I0] 19339 oIt SISQUINU IS[[RUIS ‘SUOIJRUICUIOD UOIJONPAI
97} 03 Id9Jol UWN[OD JSITj Y} Ul seouanbas requmu oy [, ‘T°G o[qe], ul sydeid oY) I0J SUOIPONPSI JNOYIM UOIIIISSIP PIJSOU JO UOIIRIUSU
-o1dwr o 19A0 juemeACIdWI B[} Jo UeIpaW pue (¢t ‘1{)) o[yrenb piryy pue 9s1y ‘(A0 "PIS) UOIIRIASD pIepue)s ‘UedN :¥°¢ 219D,

6207 80°G 98'¢- GI'sE C8ET | €9V 99T L67- 8G8I vS¥ STIOTN
G6°LT GLO- 1G9 TLLE OVE€T | 8E€T ¥6'0- €T'€- 86°LI 7S €TI0
086 800~ 06°€T- G0'GT 99¢ | 129 990 069~ 0T°0T 89°0- C¥EeTo
968 09C- CFLl- €20S 166 | V'€ 0L0- G0'G- GG¥C Ge'y CFET0
LTV 290~ 296~ L99C 06¢ |Ll9C 19C- STV LV6 871~ C¥C10
EVIT 880 128 CLV GE'GT | G99 0€T 067~ 8691 r4eRe GeC10
006 LLT- GL6- 9V'6C 86°¢ | L&C¢ 09T- VS FPCl 09°T VECTO
I1€C €8¢ T6¢Cl- 091 QT'g- | 8¥°0- 8FC- LT'L- TGL LOV- G0
887 0LC- 60TI- 8991 61°¢- | L90 68T~ ¥9G 106 06" 70
¢6'e 99'%- 696~ V0€E VLT | 680 ¢I'e- 80°G- 9€7Tl VL 0- €0
068 8T¥7- 8¢'8- 7991 L¥0- | 60T 29'e- €9G- 192 99'T- ¢10
v6'¢ IFT- €CTI- 8691 ¢rT- 1990 160- 9T'L- ¥T9 VeC 10
¢O wempelN 1D A9 PIS WO | €O wempely 10 A9 PIS WS\ W{ILIOS[Y
junoy) uoryerad() 7 SOI9Z-UON JO Ioquuny

44 CHAPTER 5. EXPERIMENTAL EVALUATION

Combination 0 1 2 3 4 5 Total

0123 57 94 92 99 90
02345 o7 93 99 90 99 48
01345 27 94 99 88 99 47
01245 57 94 92 89 99 45
01235 57 94 92 99 99 49
01234 57 94 92 99 90 45
045 57 87 99 51
04 o7 87 51
03 27 99 o7
012 57 94 92 50
01 57 94 o4

Table 5.5: Impact of the reductions on the graph size on the first level of recursion for
each combination, averaged over the graphs. All values in percent. For each reduction,
we list the size of the reduced graph relative to the output of the previous reduction. The
last column lists the size of the fully reduced graph relative to the input graph.

Combination 0 1 2 3 4 5

0123 63 94 98 94

02345 65 98 96 91 97
01345 66 99 95 91 97
01245 66 94 98 87 97
01235 64 94 98 94 98
01234 66 94 98 96 90

045 65 88 96
04 65 88

03 63 94

012 62 94 98

01 62 94

Table 5.6: Avergae impact of the reductions on the graph size over all recursion levels,
averaged over the graphs. All values in percent. Every time we apply a reduction we
compute the relative graph size before and after the application. Here, we list the average
of these relative graph sizes over the full execution of the algorithm.

45

"PIOq Ul POIYSIYSI] 018 SON[RA }SOMO "SIJOJA WOIJ SINSOI YIM G () PUR g T () SIOPIO UOIJONpal
)IM TOTIOISSTP POISaUl Paonpal oredwod apy 'g'G 9qe], wolj sydelid o) I0j junod uorjerodo pue SOISZ-UOU JO IDQUINN /"¢ 219D

5.3. EXPERIMENTAL RESULTS

gOT X TGS (0T X 29S0T X200 | g0T X 04T o0T X €T 40T X 9L'T Tepou Suta
LT X 98T 0T X8ET 0T XLET | (0T X8G'Z 0T X €9C (0T X¢9¢ £roxeatyn
Q0T XTE6 0T X CG'8 gOT X CT'8 | 0L X ITT o0L X 00°Z o0T X 00°Z X0qoIqra
OT X 9E'F 0T X€0G 0T X9GT | 0T X 8%'€ 0T X PL'E ;0T X LG'€ 1
0T X €T 0T X LT'8 ¢OT X LT°8 | ;0T X €8°, 0T X 0Z°'L 0T X 0T°L snyduwem
O X679 00 X€89 ,0TXT€9 | 0T XTT'9 0T X8G9 0T X9¢'9 oxeuds g
gOT X FO'T 0T X 90T 0T X LOT | 0T X €T o0T X 8€'T 40T X 8€'T and a3
OTX9TT 0T XET'T 0T X8T'T | ¢0T X 28°C 0T X 66T (0T X 19T AN CIACY:
0T X 06'€ 0T XTHT 0T XTSE | ;01 X688 0T X058 0T X 02°8 eqep
QT XT6T 0T XTOF 0T XL0F | 0T X I9T ¢0T X GF'T 40T X 8F'T 190
QT XTLE 0T XLGE gOT X GC'€ | 0T X8E'T 0T X LET 0T X G€'T $s0
0T X960 0T X 659 0T X 0F'9 | 0T XTLT 0T XTLT ¢OT X TL'T ¥ORID
0T X 0LL 0T XGEL OIX008 | 0TXOTC o0TX0T'T 0T X617 £eM18s80q
OTXETT 0T XGO'T (0T X 90T | 0T X IEF 0T X LT'F 40T X 0% 388509
OTXTTT 0T X TO'T (0T X9TT | 0T XGEF 0T X GT'F 40T X €F'F 0exassoq
OT X TT'E€ 0T XTIEE 0T X9EE | 0T XFOT 0T X ¥9'T 40T X G9'T 6z2ss0q
OIX 067 30T XFPEF H0T X ¥EF | ;00 X IST 50T X ¥F'T 0T X ¥F°'T zZEpPeR
OTX 20T 0T X98L 40T X98°2L | ;01 X0T'T ¢0T X 98°6 ¢OT X 98°6 ozppe
LOTXEET 0T XGET 0T XLET | 0T X 2F°€ 0T X IG€ (0T X €G°€ 11o%
00T X 09'T 0T X 88T o0 X8LT | 0T X €68 ;0T X &6 ;0T X 616 170¢
SIOTN S0 z10 | snopy S0 z10 yden

junoy) uoryerad()

| SOI0Z-UON JO IoqUInN]

46 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.2 Effect of the Recursion Limit on Running
Time and Quality

To study how the recursion limit influences the quality of the node order-
ings and the running time of reduced nested dissection, we ordered the
graphs in Table 5.1 using reduction orders 045 and 012 and varied the
recursion limit from 50 to 2000 nodes in steps of 50 nodes. We chose
these reduction orders because they perform best (see Section 5.3.1) and
because they use different sets of reductions. For this experiment we omit-
ted five graphs because of their large running times up to five hours. This
should not affect the results of this study.

As Figures 5.5 and 5.6 show, the number of non-zeros and operation count
do not change with the recursion limit in most cases. Where they change,
there is no clear trend. For the graphs amazon-2008 and web-Google the
effect of the recursion limit appears to be random.

The effect of the recursion limit on the running time of reduced
nested dissection is clearer (see Figure 5.7). With increased recursion
limit, the running time decreases. With a lower recursion limit, more
separators need to be computed. With a higher recursion limit, these
computations are replaced by a single application of the minimum degree
algorithm, which is most likely significantly faster.

While increasing the recursion limit may improve the running time of
nested dissection, at some point this will cancel out the advantages of nested
dissection over the minimum degree algorithm. Nested dissection orderings
are usually more suitable for parallel factorization than minimum degree
orderings [24]. This should be taken into account when choosing the re-
cursion limit: a lower recursion limit might be advantageous, even though
computing the node ordering will take more time.

“JIUI] I9YSI © WodJ A[Ies[d jgouaq odwosquerdgnd pue TTynE-TTeWe A[U() 'SOI9Z-UOU JO I9qUIN
97 UO }09Jo OU SBY IWI UOISINDAI o) Sursealoul syders o) JO 1S0W 104 "¢'G S[(R], Ul S® PIIRIASI(QR dIR SUOIONPIY "ON[RA WNUWIXEUT
o[} Aq POZI[RULIOU ST SOI9Z-UOU JO Ioquunu oy} ‘fdels yoes I0f “IIWI[UOISINOSI JYJ (M SOI9Z-UOU JO IoqUUNU Ul 98URY)) GG 9UnbI]

M~
<

Hwl| uolsindaJ

0002 00ST 0001 009 0 0002 00ST 0001 005 0 0002 00ST 0001 009 0 000T 00ST 0001 009 0
680
A i > 060
(s\ \/ \g\/ /\\
/ U G660
X - —_—— 00T
TT0g-UOIBID0SSEPIOM el -Im 9|8005)-qam 206010pYse|S-00s
G8'0
=}
c
A N — 0603
\Va m.
G660
\ I 2
W) \\ \ (/\\(\/.\\, /><<\< RS == >
»n v 0 . — I~ 0073
H Z10 odwonjueiS4nd poe|[@anug-dzd s98pa~e||emo3-20| s98pa~2111yS14q-20| N
—_— [0}
- S
wn
wn suol1onpal §8°07
= 3
~ 0603
= 5
M \\lf\/\<|\|/>\f\ 5608
—___ ¥
Z \ ——— S / A S 00T
m uoius |IVN3-|rews J199s911)s1deqod d19Qsioyinyod
—~
M 680
m 060
A «\J< r\4 \ 4 7 %00
: A I OO || T
« I\\IH\(|<,<\/1/\,<74 A SVl /\x\/\ (\ /\/\/ “Nes P < 001
Yo

19959110y 3NYy0D

199s931)uoilelnd

90A|nfzz-se

800g-uozewe

'syderd jsown 10} Junod uorjeIodo oY) UO J00Jo OU SeY JIUWI[UOISINIAI
o1} ‘(g'g mSB1,] 99S) SOIOZ-UOU JO IOQUINU 1} YUM SY "€'G S[R], Ul SB PIJRIADI((R dI® SUOIIONPSY] "on[eA WNWIXRUW o) A POZI[eULIOU
ST qunoo uorjeiado ayj ‘ydels yore I0 “IIWI[UOISINISI 9} [[}IM UOIIRZLIONDR] AYSS[OT) oY) JO Junod uorjersdo ul o3ury)) :9°¢ aunbi.f

CHAPTER 5. EXPERIMENTAL EVALUATION

48

1wl uoisindal
000c 00ST 0001 00§ 0 0002 00ST 0001 009 0 0002 0041 000T 00§ 0 000c 004T 000T 00§
| L0
\ (\, \<\/ / 70
, a< 60
—_— 0T
110g-UoI1eID0SSepIOM el -im 39|8009-qam 206010pYse|S-20s
20
800
/ °
ol
60
[/ f A AUANDSAA S
S0 |/|\ A _ (/\I(YW e 018
7210 — odwoniuei34nd y0e|[eInun-dgd s98pa~e||emo3-20| s98pa~ 21141y81ig-20| E
+
suol1onpal 103
3
80
N
®
Q.
’/| 60
uoiua Iyn3-jlews J99s911)s19deqod d19Qsioyinyod
20
80
\|\/||I|/\ />>< 7\/ o0
NS I N 4 ! ,:/\
lI\J\‘/\/\/«\(\)\/\/\/ oL, "V, <>/\/ t < 0
T

1995911)S10Y1Ny/0d

J995911)UoI1e}D

90A|nfzg-se

800g-uozewe

"SOSBOIOUT JTUII]
TOTSINDAI 1]} UDT[M SISBIIOP owIr) Juruun o1y sydels o1} Jo)SoUr 10, “¢'G 9[RBT, Ul S® POJRIADICQR dIR SUOTJONPIY] "oNeA WNTIIXRU 31} Aq
pozIeuLIou ST atil) Suruunl o) ‘[dels [oes 10, "JIUII[UOISINOAI JT[} IIM UOIIASSIP PAISOU PAdNPal JO ot} SUTUUNI Ul 98URY)) 1/ "¢ a4nbi

D
<t

Jwl| uolsindal

000¢ 00ST 000T 005 0 000C 0041 000t 00§ 0 000C 0041 000T 005 0 000¢ 004T 000T 005 0
¥'0
90
< 80
\ / Lo oo e e S s \l\; .II\:/\)\:\/\/\I\I/II\/\/\ VA o1
TT0gZ-UOI1BID0SSEPIOM el -14Im 3|8009-gam 206010pYse|S-20s
A\ ¥'0
90 4
c
—_——TN—— >
80 2.
\ Naamems eSS e e E
n S0 X ~~ 0T
H 210 — odwodiuei34nd t0e|Panun-dgd s98pae||emo3-00| s98pa~9111y314q-00| W
D >
o
0N suol3onpal v'0 3
- 5
[90 N
= N S - S
M ./ |)\/\/\II\/|\/|/ 90
T
m uoJus lIVn3-jlews J199s911D)s49deqod d19Q@sioyinyod
—
= ro
m 90
E |)\.!I\‘}\/\/) ! 30
., \'()I/\)\!}\/(JA{/I /\\/\/\ ™ KAACA
o r/ 1 TNV AR e
& S \ ot

1995931)S40Y3Ny/0d 1995911 U0Ie1ID 90A|nfgz-se 800g-uozewe

20 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.3 Effect of the Imbalance Constraint on Run-
ning Time and Quality

To study the influence of the node separator imbalance on the quality of the
orderings and the running time of reduced nested dissection, we ordered the
graphs in Table 5.1 using reduction orders 045 and 012, as in Section 5.3.2.
Here, we used the default recursion limit and varied the imbalance parameter
e from 5% to 50% in steps of 5%. Again, we omitted the same graphs.

Figures 5.8 to 5.10 show the change in number of non-zeros, operation
count and running time, respectively, with increasing imbalance. Number
of non-zeros and operation count both increase with the imbalance. This is
unexpected, since a larger imbalance should lead to smaller separators and
thus improve the node orderings. For most graphs, increasing the imbalance
also leads to increased running time. With increased imbalance, the recursion
also becomes more imbalanced and thus deeper. In the worst case, without
balance constraint, one of the components of the separator is almost the
same size as the input graph. Then, the recursion depth is on the order
of the number of nodes in the input graph.

Since imbalance increases the running time, the number of non-zeros and
the operation count, a lower imbalance is preferred.

—
0

5.3. EXPERIMENTAL RESULTS

*SOIOZ-UOU JO IQUINU 9} SOSLIIOUI dOUB[RQUII 9} SUISBIIOU] "¢'G 9[RBT, UI Sk PIJeIAdI(UE 9Tk SUOIJONPIY ‘onfea
WNWIXeW 91} £ POZI[RULION ST SOI9Z-UOU JO Ioquunu o1} ‘fdeId 1oes 10, "9oUR[RUII 1) [)IM SOISZ-UOU JO JIOQUINU Ul 9SURY) 9 ¢ 4nby

0S (014 0€ 0¢ 0T

1usdJad /aduejRqUIl

09 (014 0€ 0c 01T

09 1% 0€ 0C 01

09 [0i% 0€ 0¢ 01

— I\u\\\}
TT0Z-UOI1BID0SSEPIOM el -14Im 9|8005)-qom 206010PYse|G-20s
— \/.\\\l\ \\\\)\/ — T
$70 ~_ — | —
Z10 odwonjuei34oyg 0e|[Panun-dgd so8pa™ e||emo3-20| $98pa 92111y314g-20|
suoi1dnpal
—— ——— — I\/ e——
uoiud |IlYn3-jlews J99s911)s19deqod d19Q@sioyinyod
o~
— \/ .
) — ,I\/\./\||/ I<\/\/\./ \»/\ /\
1995911)540Y3Ny0d J99sa1iHuoiield 90A|nfzz-se 800g-uozewe

§C¢0

050

G20

00T

re)
N
o

o
L
<)

o o
o
o (=)
pSZi|ewJou ‘soJSZ-Uuou JO Jaquinu

)
™~
o

o
<
—

G20

00T

CHAPTER 5. EXPERIMENTAL EVALUATION

52

"Junod uoryerado a1} SOSBIOUT 9OUL[RqUII 91} SUISLAIIU] "€'G 9[RBT, Ul St PIJeIAdI(qe a1 SUOIJONPaY ‘onfeA WNWIXEW o) A pazijeuliou
st qunoo uoryerddo oy ‘Ydeild yoeos 10 OdUR[RQUIL O} UM UOIIRZLIONPR] AYSO[OT) oY} JO Junod uolperodo ur oSuey)) :6°¢ 94nbiy

0S (014 0€ 0¢ 01

1usdJad /aduelRqUUI

0§ (014 0€ 0¢ 0T

\/

\l

08 (4 0€ 0¢ 0t

AN\

09 [0i% 0€ 0¢ 0t

/

TT0g-U0I1ID0SSepIOM el -fim 39|8009-qam 206010pYse|S-20s
\/\/\ L~
\\ll
\ \'l\\'l
Sv0 d —
710 — odwodniuei34nd toe|[@anun-dzd s93pae||emo3-20| s98pa~ 21141y81iq-20|
suoljdnpal
W|\/\I/ —
uoJua Iyn3-jlews J99s911)s49deqod d19Qsioyinyod

\/('\/\

1995911)SI0Y1NY0d

T LD

1995911)UoIIeID

/\\/

90A|nfzg-se

800g-uozewe

0

90

80

0T

© <
o o
pazijewJou ‘1unod uoijesado

]
o

<
—

]] <
o o o

S
—

0

90

80

0T

"90URTR(UIT POSLIIIUT WO jgoua(03 Jeadde sydels owIos ‘IOAOMO "oUIl) SUIUUILI
9} SOSBAIOUL OS[R doUR[R]UII 97} SulseaIdul ‘SydeI8 o1} JO JSOW IO "¢'G S[QR], Ul SB PIJRIADIC(R 9IR SUOIJONPOY "ON[eA WNUWIXEW o) Aq
pazi[euLIou st owil} Suruurl oy ‘Ydeld yoes 104 90Ue[R(UWIL 97 [IIM UOIIDSSSIP POISIU PIONPaL JO oW} SUTUUILL UL 8SURY) ()] G 94nbi]

™
L0

1usdJad /eduelRqUUI

0S 014 0€ 0c 0T 05 014 0€ 0c 0T 05 ov 0€ 0c 0T 0S or 0€ 0¢ 0t
¥'0
~ 90
e \I\ // 0
~ 0T
TT0gZ-UOI1BID0SSEPIOM el -14Im 3|8009-gam 206010pYse|S-20s
0
\\
90
— g =
= p w03
e \\\I{l/ QM
n §¥0 \/ ~ AT ot
H 210 — odwodiuei34nd t0e|Panun-dgd s98pae||emo3-00| s98pa~9111y314q-00| W
- 03
wn suoilonpal v
0 3
A 90 =
— [0]
<t 80
= [X TN
—\ Al
M ~ > o1
M uoJus lIVn3-jlews J199s911D)s49deqod d19Q@sioyinyod
~ 70
Ay
=
m 90
= _— — 80
. \n\\I\\ \!{\ I o
n,5@ = e T 01

1995931)S40Y3Ny/0d 1995911 U0Ie1ID 90A|nfgz-se 800g-uozewe

o4 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.4 Exhaustive Application of Reductions

Here, we evaluate the influence of exhaustive application of reductions on the
number of non-zeros and operation count. We ran reduced nested dissection
for reduction combinations 012 and 045 with default parameters. To apply
reductions exhaustively, we apply the reductions in the specified order. Then,
as long as the number of nodes in the graph changes, we repeat the reduction
in the same order as before. We repeat this process on every recursion level.
Again, we use the same set of graphs as in Sections 5.3.2 and 5.3.3.

The results for combinations 012 and 045 are listed in Tables 5.8 and 5.9,
respectively. Also listed are the values from the experiments in Section 5.3.1
for the respective reduction combinations. With order 01 2 exhaustive appli-
cation of reductions leads to lower number of non-zeros and lower operation
count for the majority of graphs. For order 045 the result is less clear. It
appears that exhaustive reduction does not affect the quality of the ordering
in any significant way for this combination. However, applying the reduction
combination 012 exhaustively seems to improve the orderings.

Combination 012 contains only exact reductions. Combination 04 5 also
contains inexact reductions. We might conclude, that applying exact re-
ductions exhaustively improves the quality of the node orderings. However,
more results are needed to support this hypothesis.

95

"PIOq Ul poyySIYSIY d1e sonyea
189 "¢ T () UOIRUIQUIOD)M SUOIonpal Jo uorjesridde o[3UIS pUR 9ATISNRYXS I0J JUN0D Uoljersdo puR SOI9Z-UOU JO qUNN ‘§°¢ 219D],

5.3. EXPERIMENTAL RESULTS

OTXTIF9 0T XGE'9 | (0T X86'C o0T X L6°S TTOZ-UOT3eTOo0SSEpION
10T X 9L'8 10T X 488 | 0T X 00T ,0T X 04°6 ATRl-TIA
otOT X 0T°S (0T X €19 | ,0T X 69°C ,0T X6LC oTS00n-qen
10T X 99°¢ ;0T Xg8¢ | ,0T X 0SS ,0T X L9 Z06030PUSBTS-00S
00T X TG'E 40T X08°€ | 50T X6S°L 0T X VL. odwooqueT34nd
0T X768 g0T X 09°L | 0T X89F 40T X IT'¥ yoeTTeInuUn-dzd
0T X 00T Z0T X6T'T | 0T X 19T 0T X I9'T se8pe eTTRMO3-00T
00T X 90F 0T X TO'¥% | ,0T X GF'T ,0T X GF'T so8pe o313yYSTIq-00T
OT XFCE 0T X0T°€ | o0T X LT 40T X 68°C uoIUS
0T X 00F (0T X¥0F | ¢OT XZ9'9 0T X799 TTynd-TTews
z10T X 8%°G 0T X LL'9 | g0T X €8°'% (0T X 00°S T88s97T)sI0dRJ0D
0T X FCT 10T X TT'T | 0T X LV'T gOT X 9%°'T d19qsIoyanyod
0T X €9°T (0T XF9'T | ,01 XS0F ,0T X00¥ 188883 T)SIOYINYOD
2101 X 60C 70T X 80°T | g0T X 89°C gOT X L9°T I88583T)UOTIRITO
0T X €88 gOT XFI'9 | 0TI XIVT OT XTIE'T 90L1nlzz-se
¢i0T X999 10T X 0G°G | (0T X8E'C 0T XF¥I°T 800z-uozeue
9[surg oAl)SnIRYXH 7 orsuIg IATISNBYXH ydern

junoy) uoryerad()

| somy-uoN Jo wqumy

CHAPTER 5. EXPERIMENTAL EVALUATION

‘PIOq Ul poyySIySIY oIe sonyea

189 "G ¥ () WOIYRUIQUIOD YIIM suorponpal jo uoryeoridde o[3uls pue d9ATISNRYXD I0J JUN0D UolpeIddo pue S0I9Z-UOU JO DAUNN 6°¢ 219D],

26

0T X L0L O X %89 | g0T X8TF 40T X gL'y Ydeis J7(g-uorpemnossepiom
0T X 09'8 ;01 X 08'8 | ,0T X8L'6 0T X 00T qdeId ey -oims
ot0T X T0°S (0T X 20 | ,01 X29% ,0T X29°C [de1d913005-qom
0T X PL'€ (0T XELT | ,0T X LSS ,01 X LG9 de1d g06010PYSe[S-00S
o0T X 88'€ 40T X 98€ | ;01 XLL 0T XgLL qderd-odwoojuers o d
0L X L6'8 (0T XGI'6 | 0T X 69'F 401 X 9LF qderdpoereinuy-dgd
0T X 06'8 0T X LT'T | g0T X 9€'T (0T X 09'T [de1d sogpa e[remos-o0
00T X ST 0T X ST'F% | ,0T X ST ,0T X L¥'T ydeid:so8po oq1yysLiq-o0]
601 X 98°C OT X G8T | 0T X VLG 0T X TL'T ydeiduorus
QT XT0F gOT X QL€ | 0T X199 0T X 62°9 qdeid ryng-frews
2i0T X GT'Q ;0T X GG | gOL X ¥¥'¥ 401 X 9C°F yde1d- 1008031 s19dR 00
zi0T X ¥C'T 50T X 62T | gOT X 8F'T (0T X 67T qders ggqsioyimnyod
0T X QST (0T X¥9T | ,0TL X I6°€ ,0I X 10¥ [de13 1995991)SIO0T N 00
10T X G0'C 01 X90C | 0T XG9C g0 X C9C de13 1998991)UOTIRID
0L X PG 0T XTRCG | 0T XPT'T 0T X9C'T qders-gpAmlgg-se
¢rOT X 68°G 0T X GT'9 | 60T X TT'T (0T X LE'C qdeid gpog-uozeure
o[suIg OATISIIRYX 7 o[suIg OATISIRYX ydein

junoy) uorjerod() 7 SOIO7-UON JO IoquunN

5.3. EXPERIMENTAL RESULTS 27

5.3.5 Node Ordering with Clustering

We ran the clustering based node ordering algorithm with reduction or-
ders 012 and 045 and default parameters for the nested dissection. Re-
sults for the graphs in Table 5.1 are presented in Tables 5.10 and 5.11.
Running times are listed in Table 5.12

The number of non-zeros and operation count of the obtained order-
ings are higher than those from nested dissection without reductions, in
some cases by multiple orders of magnitude. The clustering based algorithm
yields better results for the graphs p2p-Gnutella04, soc-Slashdot0902 and
wordassociation-2011. For five of the six largest graphs gotst was not
able to compute the factorization, which suggests that the ordering is much
worse than one computed with nested dissection.

In terms of running time, the clustering based algorithm is faster than
nested dissection without reductions in most cases, and often performs as
well as the fastest variant of reduced nested dissection. However, the im-
plementation is inefficient, in that to extract a subgraph corresponding to
a cluster we iterate through all nodes and test if they are in the cluster.
Optimizing this should bring the running time down further.

CHAPTER 5. EXPERIMENTAL EVALUATION

o8

“UOIYeZII0}0€] Y} [SIUY 03 9 J0U Sem 35308 ‘SUISSIW oI SONBA dISYA\ ‘P[O] UI
PoIYSITYSIY 818 SaN[RA 1SOMOT SUOTIONPAT JNOTIIM TOTJOASSIP PaYsat pue SULIA)SND YIIM SULIDPIO SPOU I0] SOI8Z-UOU JO IBquInN ()] G 2]9D],

0T X 027
0T X 90°T
L0T X L¥'T
,0T X 69°G
,0T X GG°L
0T X I8F
0T X L€°T
,0T X 98T
,0T X 92°C
Q0T X 68T
00T X 90°€
0T X TL'L
0T X L9'T
0T X F0°G
0T X TG'T
LOT X 9T'¥
00T X T6'F
0T X 99°C
0T X G9°¢
0T X $€'T
0T X €2°C

00T X €T
0T X ZT'T
00T X TG'T
,0T X 99°G
o0T X 2€'C
o0T X 68°F
Q0T X €6°€
0T X €6C
0T X 6T
0T X LF'T
0T X GL°L
0T X 627
0T X 20°6
0T X 0L°9
Q0T X 9L°G
0T X 19°6

o0T X CE€F
60T X T¢'T
or0T X 0G°T
0T X 96°¢
90T X 06F%
o0T X €9V
0T X' 9L°€
0T X ¥6°C

0T X 68T
0T X 10T

60T X L9°L
601 X €CF
g0T X €C°6
60T X 89
g0T X G8°¢G
90T X ¥0°T

T1710Z-UOT3RTDOOSSBPIOM
ATel-THIA
oT800n-qonm
¢060310pyYse1s-o08
odwooquetddnd
yoeTTo2nUn-dzd
se3pe eTTeM08-D0T
se8pe 9111 y3T1Iq-20T
¥00C-ut

G00¢-ne

U0IUS

TTynI-TTeWe
d19asaedegoo
I998011)sI0dedood
d74qsI0yanyod
199897 THSIOYINFOD
000C—-Iud

199891 T)HUOTIRITOD
I911TYS-S®
90L1nlzz-se
800Z-uozeue

SUOIONPAY ON

(¢¥0) Suregsny)

(¢ 10) Surgsny)

ydein)

29

"UOTYRZLIOYDR] O1[) [[SIUY 07 o[k J0U Sem 15903 ‘SUISSIUI oI SON[RA JISA\ P[Oq Ul
POIYSIYSIY oIk soN[RA 1SOMOT STOIJONPAI JNOYJIM UOTIIISSIP PAISOU PR SULINISND M SULIOPIO dpou I0] Junod uoperdd() :77°¢ 219D,

5.3. EXPERIMENTAL RESULTS

60T X 86°9 ¢0T X 90°L 60T X 8L 170Z-UOT3RIOOSSRpION
10T X 886 ¢ 0T X LG ¢10T X 02°€ ATRl-TIIM
ot0T X GE€'F 01 X 0¢'T 0T X 1€°T oTS00n-qon
10T X ¥8°¢ 10T X ¥8°€¢ 10T X 0L°€ Z06030PYSRTS-20S
00T X €G°¢ 0T X 29 60T X GT'G odwoo3uet8dnd
60T X €€°6 0T X 756 60T X TL'8 yoeTTe3nuUn-dzd
0T X 9T°6 ;0T X 08°% 2101 X 8T'F se8pe e1TRMO3-00T
otOT X L9°% ;01 X 20’1 10T X 70°T se8pe 9111 y8TIq-20T
60T X 2S¢ — — ¥00z-ut
10T X 1%°9 — — G00Z-1®
60T X ¥6°¢ 00T X €2°F 010 X 00°G uoIue
¢OT X 8T°C 0T X 2T'T 0T X TL'9 TTVnI-TTRWS
10T X €8°€ — — d1dasxededoo
z10T X GL'9 o — Jooseqtnsaadeoo
10T X 6T’ T 0T X IT'¥ 0T X 0¥ d79@sI0yanyod
0T X TL'T 01 X¥9°1 10T X 09'T 198593 T)SIOYINYOD
0T X ¥¥'¢ ¢10T X GE'T e10T X LE'T 000Z-Iuo
z10T X 60°C ;01 X 1€°¢ 0T X ¥¥'¢ I88S93T)HUOTIRITD
10T X T9'F ;01 X708 2101 X 02’8 I8331¥S-S®
90T X 99°9 ¢0T X GZ'9 0T X GZ'. 90L1nlzz-se
¢10T X 9L°G — — 800z-uozewe

UOI3ONPIY ON

(6¥0) Sutoysny) (g 10) Sutmesny)

ydein

CHAPTER 5. EXPERIMENTAL EVALUATION

60

"PIOQ UT POIYSIYSIY o€ SO} SUTUUNI }SOMOT "SPUO0JdS Ul 918 SOUIl) SUTUUILI
MV “(1°¢'¢ uoroag ur sjuemuiiodxs oY) WIOIJ) UOIIDSSSIP Po)set PIdNpPal JO JURLIBA 1S9)SB] oY) I0] PUR SUOIPONPAI JNOYIIM UOIJIASSIP
pojseu 0] ‘(sesar[juared Ul UOIRUIGUIOD UOIJONPAI ‘SUWUN[OD OM] ISIY) SULIDISND [HIM SULIOPIO 9pOU I0] Sow) Suruuny :Fi°¢ 279D

6L°€S LV'9L Vevs 8€°9¢ TT0Z-UOT3eTID0SSBPIOMN
I8 TLEC P 1L99 €C'16¢C¢C SR ATRL-THTA
8L'E€SCT T 66975 € 8V6LE T 9L Lee T 9T800n-qon
€6°¢€6¥ €c'ecs 11%7499 0L°LTG Z06030pPYSBTS-208
92°6 L8°LT 66°C 89°C odwoojuet84nd
0T°0¢ €I'8¢ 69°6C 0°zE yoeTTeInUH-dgd
81°9.6 TETL6 T €L°996 GLGLET s98ps eTTeN03-D0T
80°CVI V¥'L8¢ 8C VY1 €1'991 se8pe” 91 TH1YSTIq-20T
9L°CveER 9'€06 LE 8VGT LT 6°00L6T 00C-ut
T°68€VC reveey VLLBEY 1°9TL8C G00g-n®
1C°G8T Ge ISy I8°T0C L6'80¢ uoxus
69°€V 1L€ect ov'1v veav TIyng-TTews
G6'1ITV T 8'8C6CT 74€809 ¢¥'80L¥ d1dasadedod
SV 1GL T'GLT LT 99°GL6 G 10°€cy € Ieeseg1psiadedod
6€°97V Prervt L8016 91906 d19qs10y3anyod
€T°¢61 T0°TL8 VL LTS L9760V I99893THSIOYINY0D
79°600 6 G eeret 9€690T 181656 000g-Iud
VraLe T 86 1G] T TG'860 T ve1er 1 I99893THUOTIRITO
9VCITT 8'cLcEl Leesel 9'068¢I I933TYS-S®
8LTE G6'8L TL'6T 79°ce 9041nlzz-s®e
I'vics ¢s0e19 8C'€S0¥ 6T 70TV 800g-uozewe
JueLIep 9se)se suoronpay oN (G () Suteysny) (g 10) Sunesny)) ydein)

Chapter 6

Discussion

6.1 Future Work

Our implementation of the minimum degree algorithm does not make use
of the improvements described in Section 3.2. Incorporating these should
further improve the running time. However, it is not necessarily clear if
they can simply be used together with the reductions or if they need to be
adjusted somehow. It might be helpful to associate with each node infor-
mation on how it is related to the original graph.

So far, we use three exact and two inexact reductions. Corollary 4.2.1
suggests a new exact reduction, where nodes with degree two are eliminated.
To implement this requires testing for every node with degree two to see if
it is in a cycle. A naive implementation based on breadth-first search would
have a worst case complexity of O(n?) for a graph with n nodes. However,
this should be faster in practice. For example, all neighbors of a node x with
degree two are in a cycle if x is in a cycle. If we can efficiently test if a node
with degree two is in a cycle, we can also test if it is not in a cycle. Thus, we
can find nodes that are separators and we need to compute fewer separators.

Orderings from our clustering-based algorithm are of low quality. Intu-
itively, we expect clusters to be ordered together. However, it is not clear
how graph clustering and the minimum fill-in problem are connected. There
are some possible modifications to this algorithm. First, a different clus-
tering algorithm might improve the node orderings. How we define clus-
ters plays an important role here. However, the clustering algorithm should
not be too expensive, otherwise we do not gain the desired improvement in
running time over reduced nested dissection. Second, the graph can be re-
duced before the clustering step. This way we can guarantee that nodes that
should be eliminated together do not end up in different clusters. Lastly, it

61

62 CHAPTER 6. DISCUSSION

might be beneficial to take connections between the clusters into account
when ordering the individual subgraphs.

6.2 Conclusion

In this thesis we introduced exact and inexact reductions for the minimum
fill-in problem. We applied them in a nested dissection algorithm, which
we call reduced nested dissection. We also introduced an algorithm for the
minimum fill-in problem based on graph clustering.

Our reduced nested dissection algorithm is faster than nested dissec-
tion without reductions, with a median improvement close to 50%. It also
yields orderings with lower number of non-zeros and operation count for the
Cholesky factorization. However, applying reductions exhaustively has only
a small impact on the quality of the node orderings.

The clustering based algorithm leads to node orderings that are orders
of magnitudes worse than those from nested dissection, both in terms of
the number of non-zeros and the operation count. However, the running
time of our implementation is close to that of reduced nested dissection
and can still be improved further.

Bibliography

1]

F. N. Abu Khzam. “Topics in graph algorithms: structural results
and algorithmic techniques, with applications”. PhD thesis. 2003. URL:
https://trace.tennessee.edu/utk_graddiss/1954/.

T. Akiba and Y. Iwata. “Branch-and-reduce exponential/FPT algo-
rithms in practice: A case study of vertex cover”. In: Theor. Comput.
Sci. 609 (2016), pp. 211-225. 18SN: 0304-3975. DOT: 10.1016/j.tcs.
2015.09.023.

P. Amestoy, T. Davis, and I. Duff. “An approximate minimum de-
gree ordering algorithm”. In: SIAM J. Matriz Anal. Appl. 17.4 (1996),
pp- 886-905. DOI: 10.1137/50895479894278952.

C. Ashcraft. “Compressed graphs and the minimum degree algorithm”.
In: SIAM J. Sci. Comput. 16.6 (1995), pp. 1404-1411. por: 10.1137/
0916081.

C. Ashcraft and J. W. H. Liu. “Generalized nested dissection: some
recent progress”. In: Proceedings of the Fifth SIAM Conference on Ap-
plied Linear Algebra. Ed. by J. G. Lewis. SIAM Publications, 1994,
pp- 130-134.

C. Ashcraft and J. W. H. Liu. “Robust ordering of sparse matrices using
multisection”. In: SIAM J. Matriz Anal. Appl. 19.3 (1998), pp. 816-832.
DOI: 10.1137/50895479896299081.

U. Bertele and F. Brioschi. “A new algorithm for the solution of the
secondary optimization problem in non-serial dynamic programming”.
In: J. Math. Anal. Appl. 27.3 (1969), pp. 565-574.

U. Bertele and F. Brioschi. “Contribution to nonserial dynamic pro-
gramming”. In: J. Math. Anal. Appl. 28.2 (1969), pp. 313-325.

J. R. Blair, P. Heggernes, and J. A. Telle. “A practical algorithm for
making filled graphs minimal”. In: Theor. Comput. Sci. 250.1 (2001),
pp- 125-141. DOI1: 10.1016/S0304-3975(99)00126-7.

63

https://trace.tennessee.edu/utk_graddiss/1954/
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1137/S0895479894278952
https://doi.org/10.1137/0916081
https://doi.org/10.1137/0916081
https://doi.org/10.1137/S0895479896299081
https://doi.org/10.1016/S0304-3975(99)00126-7

64

[10]

[14]

[15]

[16]

[19]

[20]

BIBLIOGRAPHY

A. Bulug, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. “Recent
advances in graph partitioning” In: Algorithm Engineering: Selected
Results and Surveys. Ed. by L. Kliemann and P. Sanders. Springer
International Publishing, 2016, pp. 117-158. DO1: 10.1007/978-3-
319-49487-6_4.

J. F. Buss and J. Goldsmith. “Nondeterminism within P*”. In: SIAM
J. Comput. 22.3 (1993), pp. 560-572. DOT: 10.1137/0222038.

J. Chen, I. A. Kanj, and G. Xia. “Improved upper bounds for vertex
cover”. In: Theor. Comput. Sci. 411.40 (2010), pp. 3736-3756. DOI:
10.1016/j.tcs.2010.06.026.

B. Chor, M. Fellows, and D. Juedes. “Linear kernels in linear time, or
how to save k colors in O(n?) steps”. In: Graph-Theoretic Concepts in
Computer Science. Ed. by J. Hromkovi¢, M. Nagl, and B. Westfechtel.
Berlin, Heidelberg: Springer, 2005, pp. 257-269.

F. R. K. Chung and D. B. Mumford. “Chordal completions of planar
graphs”. In: J. Comb. Theory. B 62.1 (1994), pp. 96-106. por: 10 .
1006/jctb.1994.1056.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. “A column ap-
proximate minimum degree ordering algorithm”. In: ACM Trans. Math.
Softw. 30.3 (2004), pp. 353-376. DOIL: 10.1145/1024074.1024079.

T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix
Collection”. In: ACM Trans. Math. Softw. 38.1 (2011), pp. 1-25. DOL:
10.1145/2049662.2049663.

T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. “A survey of
direct methods for sparse linear systems”. In: Acta Numer. 25 (2016),
pp. 383-566. DOI: 10.1017/S0962492916000076.

A. George. “Nested dissection of a regular finite element mesh”. In:
SIAM J. Numer. Anal. 10.2 (1973), pp. 345-363. por: 10 . 1137/
0710032.

A. George and J. W. H. Liu. “A fast implementation of the minimum
degree algorithm using quotient graphs”. In: ACM Trans. Math. Softw.
6.3 (1980), pp. 337-358. DOI: 10.1145/355900.355906.

A. George and J. W. H. Liu. “A quotient graph model for symmetric
faetorization” In: Sparse Matriz Proceedings 1978. Ed. by 1. S. Duff
and G. W. Stewart. STAM Publications, 1978, pp. 154-175.

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1137/0222038
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1006/jctb.1994.1056
https://doi.org/10.1006/jctb.1994.1056
https://doi.org/10.1145/1024074.1024079
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.1145/355900.355906

BIBLIOGRAPHY 65

[21]

22]

[26]

[27]

[28]

A. George and J. W. H. Liu. “An automatic nested dissection algorithm
for irregular finite element problems”. In: SIAM J. Numer. Anal. 15.5
(1978), pp. 1053-1069. DOI: 10.1137/0715069.

A. George and J. W. H. Liu. “The evolution of the minimum degree
ordering algorithm”. In: SIAM Rev. 31.1 (1989), pp. 1-19. por: 10.
1137/1031001.

G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
2013.

M. T. Heath, E. Ng, and B. W. Peyton. “Parallel algorithms for sparse
linear systems”. In: STAM Rev. 33.3 (1991), pp. 420-460. poI: 10.1137/
1033099.

P. Heggernes. “Minimal triangulations of graphs: A survey”. In: Dis-
crete Math. 306.3 (2006). Minimal Separation and Minimal Triangula-
tion, pp. 297-317. DOI: 10.1016/j.disc.2005.12.003.

B. Hendrickson and E. Rothberg. “Improving the run time and quality
of nested dissection ordering”. In: SIAM J. Sci. Comput. 20.2 (1998),
pp. 468-489. DOI: 10.1137/51064827596300656.

A. J. Hoffman, M. S. Martin, and D. J. Rose. “Complexity bounds for
regular finite difference and finite element grids”. In: SIAM J. Numer.
Anal. 10.2 (1973), pp. 364-369. pOI: 10.1137/0710033.

Y. Iwata. “A faster algorithm for dominating set analyzed by the po-
tential method”. In: Parameterized and Exact Computation. Ed. by D.
Marx and P. Rossmanith. Berlin, Heidelberg: Springer, 2012, pp. 41—
54.

G. Karypis and V. Kumar. “A fast and high quality multilevel scheme
for partitioning irregular graphs” In: SIAM J. Sci. Comput. 20.1
(1998), pp. 359-392. DOI: 10.1137/51064827595287997.

S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck.
“Finding near-optimal independent sets at scale”. In: J. Heuristics
23.4 (2017), pp. 207-229. DOL: 10.1007/510732-017-9337-x.

S. L. Lauritzen and D. J. Spiegelhalter. “Local computations with prob-
abilities on graphical structures and their application to expert sys-
tems”. In: J. Roy. Stat. Soc. B. Met. 50.2 (1988), pp. 157-194. DpOI:
10.1111/3j.2517-6161.1988.tb01721 . x.

https://doi.org/10.1137/0715069
https://doi.org/10.1137/1031001
https://doi.org/10.1137/1031001
https://doi.org/10.1137/1033099
https://doi.org/10.1137/1033099
https://doi.org/10.1016/j.disc.2005.12.003
https://doi.org/10.1137/S1064827596300656
https://doi.org/10.1137/0710033
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x

66

[32]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

R. J. Lipton, D. J. Rose, and R. E. Tarjan. “Generalized nested dis-
section”. In: SIAM J. Numer. Anal. 16.2 (1979), pp. 346-358. DOL:
10.1137/0716027.

R. J. Lipton and R. E. Tarjan. “A separator theorem for planar graphs”.
In: SIAM J. Appl. Math. 36.2 (1979), pp. 177-189. por: 10. 1137/
0136016.

H. M. Markowitz. “The elimination form of the inverse and its applica-
tion to linear programming”. In: Manag. Sci. 3.3 (1957), pp. 255-269.
DOI: 10.1287/mnsc.3.3.255.

H. Meyerhenke, P. Sanders, and C. Schulz. “Partitioning complex net-
works via size-constrained clustering”. In: Ezperimental Algorithms. Ed.
by J. Gudmundsson and J. Katajainen. Springer International Publish-
ing, 2014, pp. 351-363.

T. Ohtsuki, L. K. Cheung, and T. Fujisawa. “Minimal triangulation of a
graph and optimal pivoting order in a sparse matrix”. In: J. Math. Anal.
Appl. 54.3 (1976), pp. 622-633. DOT: 10.1016/0022-247X(76)90182-7.

S. Parter. “The use of linear graphs in gauss elimination”. In: STAM
Rev. 3.2 (1961), pp. 119-130. por: 10.1137/1003021.

F. Pellegrini. Scotch. URL: https://www.labri.fr/perso/pelegrin/
scotch/ (visited on 03/18/2019).

A. Pothen, H. Simon, and K. Liou. “Partitioning sparse matrices with
eigenvectors of graphs” In: SIAM J. Matriz Anal. Appl. 11.3 (1990),
pp. 430-452. DOI: 10.1137/0611030.

U. N. Raghavan, R. Albert, and S. Kumara. “Near linear time algo-
rithm to detect community structures in large-scale networks”. In: Phys.
Rev. E 76 (3 2007), p. 036106. DOI: 10.1103/PhysRevE.76.036106.

D. J. Rose. “A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations”. In: Graph Theory and
Computing. Ed. by R. C. Read. Academic Press, 1972, pp. 183-217.
DOI: 10.1016/B978-1-4832-3187-7.50018-0.

D. J. Rose. “Triangulated graphs and the elimination process”. In:
J. Math. Anal. Appl. 32 (1970), pp. 597-609. DOI: 10.1016/0022~
247X (70)90282-9.

D. Rose, R. E. Tarjan, and G. S. Lueker. “Algorithmic aspects of vertex
elimination on graphs”. In: SIAM J. Comput. 5.2 (1976), pp. 266-283.
DOI: 10.1137/0205021.

https://doi.org/10.1137/0716027
https://doi.org/10.1137/0136016
https://doi.org/10.1137/0136016
https://doi.org/10.1287/mnsc.3.3.255
https://doi.org/10.1016/0022-247X(76)90182-7
https://doi.org/10.1137/1003021
https://www.labri.fr/perso/pelegrin/scotch/
https://www.labri.fr/perso/pelegrin/scotch/
https://doi.org/10.1137/0611030
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1016/B978-1-4832-3187-7.50018-0
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1137/0205021

BIBLIOGRAPHY 67

[44]

[45]

[46]

[47]

[49]

[50]

[51]

P. Sanders and C. Schulz. “Advanced multilevel node separator algo-
rithms”. In: Fzperimental Algorithms. Ed. by A. V. Goldberg and A. S.
Kulikov. Springer International Publishing, 2016, pp. 294-309.

P. Sanders and C. Schulz. “Think locally, act globally: Highly bal-
anced graph partitioning”. In: Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13). Vol. 7933. LNCS.
Springer, 2013, pp. 164-175.

C. Schulz. “High quality graph partitioning”. PhD thesis. 2013. DOI:
10.5445/IR/1000035713.

A. J. Soper, C. Walshaw, and M. Cross. “A combined evolutionary
search and multilevel optimisation approach to graph-partitioning”. In:
J. Global. Optim. 29.2 (2004), pp. 225-241. po1: 10.1023/B:J0GO.
0000042115.44455.£3.

B. Speelpenning. The generalized element method. Tech. rep.
UIUCDCS-R-78-946. Urbana, IL: Department of Computer Science,
University of Illinois at Urbana-Champaign, 1978.

R. E. Tarjan and A. E. Trojanowski. “Finding a maximum independent
set”. In: SIAM J. Comput. 6.3 (1977), pp. 537-546. por: 10.1137/
0206038.

W. F. Tinney and J. W. Walker. “Direct solutions of sparse network
equations by optimally ordered triangular factorization” In: Proc.
IEEE 55.11 (1967), pp. 1801-1809. por: 10.1109/PROC. 1967 .6011.

M. Xiao and H. Nagamochi. “Confining sets and avoiding bottleneck
cases: A simple maximum independent set algorithm in degree-3
graphs”. In: Theor. Comput. Sci. 469 (2013), pp. 92-104. DpoOI:
10.1016/j.tcs.2012.09.022.

M. Xiao and H. Nagamochi. “Exact algorithms for maximum indepen-
dent set”. In: Algorithms and Computation. Ed. by L. Cai, S.-W. Cheng,
and T.-W. Lam. Berlin, Heidelberg: Springer, 2013, pp. 328-338.

M. Yannakakis. “Computing the minimum fill-in is NP-complete”. In:
SIAM J. Algebraic Discrete Methods 2.1 (1981), pp. 77-79. DOI: 10.
1137/0602010.

https://doi.org/10.5445/IR/1000035713
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1137/0206038
https://doi.org/10.1137/0206038
https://doi.org/10.1109/PROC.1967.6011
https://doi.org/10.1016/j.tcs.2012.09.022
https://doi.org/10.1137/0602010
https://doi.org/10.1137/0602010

	Introduction
	Our Contribution
	Structure of the Thesis

	Fundamentals
	Symmetric Factorization
	Node Ordering

	Related Work
	Minimum Fill-In Orderings
	The Minimum Degree Algorithm
	Nested Dissection
	Node Separators
	Reduction Rules
	Label Propagation

	Reduced Nested Dissection
	Exact Reductions
	Simplicial Nodes
	Indistinguishable Nodes
	Twins
	Path Compression

	Inexact Reductions
	Degree-2 Elimination
	Triangle Contraction

	Node Ordering with Graph Clustering

	Experimental Evaluation
	Implementation Details
	Experimental Setup
	Experimental Results
	Combinations of Reductions
	Effect of the Recursion Limit on Running Time and Quality
	Effect of the Imbalance Constraint on Running Time and Quality
	Exhaustive Application of Reductions
	Node Ordering with Clustering

	Discussion
	Future Work
	Conclusion

	Bibliography

