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Abstract

In this thesis, we introduce three new approaches for a one-to-one mapping of Carte-
sian graphs C with isomorphic communication (also called stencils) onto a symmetric
hardware hierarchy. First, we present two greedy approaches, one centralized, one
distributed, both using a priority queue to assign ranks onto the computation nodes,
trying to maximize the number of on-node neighbors. The third approach, the
hyperplane algorithm, recursively partitions the Cartesian graph C into two parts,
while trying to minimize the communication between each partition, until all par-
titions can be mapped onto the computation nodes. The big advantage of the
hyperplane algorithm is the fast runtime, which is no longer directly dependent
on the number of vertices n or edges m in C.

We compared our approaches to MPI’s default rank assignment, MPI’s reordering
scheme in the function MPI_Cart_create, Gropp’s approach Nodecart and the general
mapping tool VieM for different communication patterns or stencils. The hyperplane
algorithm outperformed on average both of MPI’s approaches and outperformed or
matched Nodecart for all stencils on the tested instances. For the general five-point
stencil it was even capable of finding on average partitions with less inter-node
communication than VieM. Both of the greedy approaches are only beneficial for
certain communication patterns, but performed poorly for the general five-point
stencil. We benchmarked the time needed for a MPI_Neighbor_alltoall exchange
and could show that the reordering schemes presented in this thesis improved the
bandwidth for various message sizes. For the sake of completeness, we measured
and compared the instantiation time of all methods.
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Zusammenfassung

In dieser Arbeit, stellen wir drei neue Herangehensweisen für eine eins-zu-eins
Zuweisung von Cartesischen Graphen C mit einer isomorphischen Kommunikations-
struktur (auch bekannt als Stempel) auf eine symmetrische Hardwarehierarchie vor.
Zuerst präsentieren wir zwei greedy Methoden, die eine zentralisiert, die andere
verteilt. Beide Methoden benutzten eine Priority Queue um die Ränge den Knoten
zuzuteilen und versuchen dabei die Kommunikation auf den Knoten zu maximieren.
Als Drittes, stellen wir den Hyperplane Algorithmus vor, der den Inputgraphen
rekursiv in zwei Teile teilt und dabei versucht die Kommunikation zwischen den
Partitionen zu minimieren. Das wiederholt er, bis alle Partitionen auf die Knoten
verteilt werden können. Der große Vorteil des Hyperplane Algorithmus ist, dass die
Laufzeit nicht mehr von der Anzahl der Knoten n oder der Kanten m in C abhängt.

Wir vergleichen die vorgestellten Methoden mit MPI’s standard Rangverteilung,
mit der Verteilung die durch das setzen der reordering Flagge in der Funktion
MPI_Cart_create erlangt wird und der allgemeinen Mappingsoftware VieM für unter-
schiedliche Kommunikationsmuster oder Stempel. Der Hyperplane Algorithmus findet
im Schnitt immer bessere Partitionen als die MPI Algorithmen und ist mindestens
genauso gut wie der Nodecart Ansatz, für die getesteten Instanzen. Im Falle des
generellen fünf-punkt Stempels, findet er sogar im Schnitt bessere Mappings als
VieM. Die beiden greedy Algorithmen konnten nur für bestimmte Kommunikations-
muster vorteilhafte Partitionen finden. Wir haben die Kommunikationszeit für die
MPI_Neighbor_alltoall Routine mit unterschiedlich großen Nachrichten gemessen
und konnten zeigen, dass die Rangzuweisungsstrategien, die in dieser Arbeit präsen-
tiert wurden einen positiven Effekt auf die Kommunikationsdauer hat. Schlussendlich
haben wir auch die Instantiierungszeit für die unterschiedlichen Methoden gemessen.
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Chapter 1

Definitions

In this chapter we will present the definitions and terminology used throughout
this thesis. The goal is to give the reader a necessary vocabulary for the following
chapters. We will first explain the theoretical terminology and proceed to give a
brief summary of important MPI functionalities and routines.

1.1 Theoretical Definitions

This thesis treats mapping for Cartesian graphs. In order to understand what a
Cartesian graph is, we will first introduce the general concept of a graph, followed
by what we define to be a grid and proceed to the definition of Cartesian graphs. In
Chapter 2, we formulate the mapping problem as a quadratic assignment problem
(QAP), hence we finish this section by introducing QAP in its original form.

1.1.1 Graphs

A graph G = (V,E) consists of a set of vertices V = {0, . . . , n− 1} and a set of edges
E ⊆ V ×V . The vertices and the edges can be associated with weights given by some
cost functions c : V → R and ω : E → R. We can write an edge as the pair of a source
vertex u ∈ V and a target vertex v ∈ V i.e., (u, v). We say a graph is undirected if for
every edge e = (u, v) ∈ E there is a reverse edge (v, u), and the weights of both edges
are equal. A subgraph G′ = (V ′, E ′) of G has a set of vertices V ′ ⊆ V and a set of edges
E ′ ⊆ E ∩ (V ′ × V ′). If there is an edge e ∈ E ′ between any two vertices u, v ∈ V ′ in
a subgraph G′ of G then we call this subgraph a clique. The neighborhood of a vertex
u is defined by all vertices that are adjacent from u, i.e., N(u) := {v | (u, v) ∈ E}.
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1.1.2 Grids

A d-dimensional grid g is a tuple of dimension sizes D = (d1, . . . , dd) with di ∈ N+1

for 1 ≤ i ≤ d and a basis consisting of a set of orthonormal vectors E = {e1, . . . , ed}
defining the directions of the grid. For the sake of convenience, we can assume that
each vector ei ∈ E has only one non-zero entry (this can always be enforced by a
suitable transformation of the reference coordinate system). A point x on a grid is
defined by a coordinate vector x = (x1, . . . , xd) in which it holds that 0 ≤ xi ≤ di − 1
for each dimension i. The set of all points on a grid is therefore given by d1× · · ·× dd.
We define the size of a grid |g| to be the total number of points i.e., |g| =

∏d
i=1 di.

We say a grid is periodic in a dimension i with 1 ≤ i ≤ d if first, the initial coordinate
value xi along that dimension is bound by 0 and di − 1, i.e., xi ∈ [0, di − 1] and
secondly, the addition of any number n ∈ Z is defined to be xi + v := (xi + v)
mod di. A subgrid g′ of a grid g has the same dimension d as the original grid and
for each dimension p′i with 1 ≤ i ≤ d of the subgrid holds that 1 ≤ d′i ≤ di. The
set of points belonging to g′ is a subset of the points on g.

1.1.3 Cartesian Graphs

A Cartesian graph C = (V,E) is a graph embedded on a d-dimensional grid. Each
vertex v ∈ V is associated with a point on the grid and has coordinates (v1, . . . , vd).
For each vertex holds that 0 ≤ vi ≤ di−1, for 0 ≤ i ≤ di. For the sake of convenience,
we assume that the number of vertices in a Cartesian graph C will always be equal
to the number of points in a grid g, i.e., |V | =

∏d
i=1 di.

1.1.4 Quadratic Assignment Problem

The quadratic assignment problem was introduced in 1957 by Koopmans and Beckman
[22]. The problem was to assign a set F of n facilities to a set L of n locations with
the goal to minimize the total assignment cost, which consists of the total, weighted
sum of flows. More formally, let C ∈ Rn×n be the flow intensity matrix, i.e., Ci,j is
the intensity of the flow between facilities i and j with i, j ∈ F. Let D ∈ Rn×n be the
distance matrix, i.e.,Di,j is the distance between the locations k and l with k, l ∈ L. Let
Π = π : N→ N be the set of all permutations π. A permutation π will assign facility
π(i) ∈ F to entity i ∈ L. Then we want to find a permutation π∗ ∈ Π that minimizes

1We define N+ to be the set of natural numbers without 0.
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Dim 0Dim 1

(a) 5× 4 non-periodic grid

Dim 0Dim 1

(b) 5× 4 periodic grid

Dim 0Dim 1

(c) 5× 4 non-periodic grid, with subgrids

Dim 0Dim 1

(d) 5× 4 periodic grid, with subgrids

Figure 1.1: Two 5×4 grids. (a) is not periodic in any dimension. (b) is periodic along
dimension 0. (c) two possible subgrids, green and red on the original non-periodic
grid. (d) another two possible subgrids, green and red on the original periodic gird.

J (C,D, π) :=
n∑
i=1

n∑
j=1

Cπ(i),π(j)Di,j. (1.1)

We call Cπ(i),π(j)Di,j the weighted flow between the facilities i and j. If the
mapping is not strictly one-to-one, but multiple entities in F can be mapped to
an entity in L then we define the load l of an entity i ∈ L to be the number of
entities in F that are mapped to i, i.e., l(i) = |{j ∈ F | π(j) = i}|.2 In a one-to-
one mapping all entities in F have a load of one. The problem can be generalized
to many applications see [8, 43] for further reading.

2The function π is longer a permutation in this case.
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1.2 Technical Definitions

All the algorithms presented in this thesis work within MPI, therefore it is imperative
that the reader is aware of the MPI functions and routines used within these algorithms.
For this sake, we will shortly introduce MPI and proceed to present the concepts of
communicators, virtual topologies and communication routines and patterns, which
are important for this thesis. This introduction is far from being complete, but we
hope it will give the reader the necessary understanding for the later chapters.

1.2.1 Introduction to MPI

MPI [27] stands for Message Passing Interface and is a standardized API for
distributed and parallel computing. In an MPI program a set of independent
processes perform tasks in an MIMD or SIMD manner. The number of
processes p for a run is specified by the user.

1.2.2 Communicators

In order to give context to the communication between processes, there exists an
object called a communicator. A communicator represents an ordered group of
processes. Each process can be identified within the communicator with a unique
number called the rank R, for which it holds that 0 ≤ R ≤ pcomm − 1, where pcomm is
the size of the group associated with the communicator, i.e., the number of processes
in the communicator. MPI provides a default communicator for every run called
MPI_COMM_WORLD, in which all processes are included. Processes within the group of a
communicator can exchange point-to-point messages. One can extract the number of
processes in a communicator with the function MPI_Comm_size and each process can
retrieve its assigned rank R in the communicator with the routine MPI_Comm_rank,
see Listing 1.1 for the function signature in C. The functions can also be used in C++.

Listing 1.1: Signatures of MPI_Comm_rank and the MPI_Comm_size routines
int MPI_Comm_rank(MPI_Comm comm , int *rank);
int MPI_Comm_size(MPI_Comm comm , int *size);

MPI provides a routine called MPI_Comm_split to create new communicators from
an existing one. The group of processes associated with a new communicator is a
subgroup of the group of processes in the old communicator. The groups of processes
of the new communicators are mutually disjoint, i.e., no process in the original
communicator is in two groups of the newly created communicators. Each process
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in the old communicator calling MPI_Comm_split can specify a number called the
color, determining to which new communicator it will belong, and a number called
the key determining the rank in the new communicator of the calling process. If a
process passes the constant MPI_UNDEFINED as the color then the routine will return
a construct called MPI_COMM_NULL, which is a handle for an invalid communicator,
see Listing 1.2 for the function signature. The number of new communicators being
created is defined by the number of distinct values of color passed by the processes in
the old communicator. There exists a useful routine MPI_Comm_split_type which
allows splitting by a type called MPI_COMM_TYPE_SHARED, which specifies that all
processes in a new communicator have shared memory. This routine allows creating
as many communicators as there are computation nodes in a run of the program.

Listing 1.2: Function signatures of MPI_Comm_split and MPI_Comm_split_type
int MPI_Comm_split(MPI_Comm comm ,

int color ,
int key ,
MPI_Comm *new_comm );

int MPI_Comm_split_type(MPI_Comm comm ,
int split_type ,
int key ,
MPI_Info info ,
MPI_Comm *new_comm );

MPI provides a function to get a mapping of the ranks in a communicator to the
ranks of the processes in another communicator called MPI_Group_translate_ranks.
Given the rank of the process in one of the communicators, the routine allows to
compare the relative numbering of a process in the other communicator. The function
takes an input the groups associated with the communicators, a number indicating
the size of the smaller group and an integer array corresponding to the ranks of
the smaller group. The output is an integer array with the corresponding ranks
in the second group. See Listing 1.3 for the function signature.

Listing 1.3: MPI_Group_translate_ranks which finds a mapping between the ranks
in group of one communicator to the ranks in group of another
int MPI_Group_translate_ranks(MPI_Group group1 ,

int n, const int ranks1[],
MPI_Group group2 ,
int ranks2 []);
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1.2.3 Virtual Topologies

Some communicators allow the processes to be arranged on a virtual topology, which
is a special mapping of the processes associated with the communicator to some
communication structure. A topology can be expressed as a graph G = (V,E),
where the processes correspond to the vertices V and the communication pattern
between the processes can be expressed in the form of directed edges E. Note that
even though there might not be a specified explicit communication edge between
two processes, they can still communicate with one another.

A Cartesian topology is a regular d-dimensional grid that can be periodic along any
dimension. A Cartesian communicator is a communicator in which the processes are
arranged on a Cartesian topology. The tuple of dimension sizes D = (d1, . . . , dn) of
the grid is defined by the number of processes along each dimension di ∈ D. A routine
called MPI_Dims_create takes as input parameters the total number of processes p,
the number of dimensions d and calculates a possible size of the grid, trying to make
the size of each dimension as close to each other as possible. MPI has a routine to create
Cartesian communicators called MPI_Cart_create, which take as input the dimension
sizes D, a logical array specifying if a dimension is periodic and a flag allowing MPI
to rearrange the processes to possibly better fit the physical machine. The number of
processes p in a Cartesian communicator is given by p =

∏n
i=1 di. Each process with

rank R in the Cartesian communicator is associated with coordinates (R1, . . . , Rn)
with 0 ≤ Ri < di, defining its position on the grid. There are MPI routines that allow to
extract the coordinates of a process in a Cartesian communicator (MPI_Cart_coords),
or get the rank associated with some specific coordinates (MPI_Cart_rank).

Listing 1.4: Signatures for MPI_Cart_create, MPI_Dims_create, MPI_Cart_coord
and MPI_Cart_rank
int MPI_Cart_create(MPI_Comm comm_old ,

int ndims ,
const int dims[],
const int periods[],
int reorder ,
MPI_Comm *comm_cart );

int MPI_Dims_create(int nnodes , int ndims , int dims []);

int MPI_Cart_coord(MPI_Comm comm , int rank , int maxdims ,
int coords []);
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int MPI_Cart_rank(MPI_Comm comm , int coords[], int *rank);

A distributed graph topology describes the communication relationship between
processes in a general graph structure. The function MPI_Dist_graph_create al-
lows to create a distributed graph communicator, taking as an input the adjacency
list of communication neighbors, the weights of communication edges and a flag
allowing MPI to reorder the processes, see Listing 1.5 for the function signature.
Each process in the original communicator can specify its own communication neigh-
bors and the weights of the communications, allowing for a scalable distributed
way of specifying the global communication graph.

Listing 1.5: Function signature for the MPI_Dist_graph_create routine
int MPI_Dist_graph_create(MPI_Comm comm_old , int n,

const int sources[], const int degrees[],
const int destinations [], const int weights[],
MPI_Info info , int reorder ,
MPI_Comm *comm_dist_graph );

1.2.4 Communication

This subsection introduces some terminology and routines for communication in MPI.
We will present those we deem necessary to understand further parts of the thesis,
in particular routines used for the experiments in Chapter 6.

Collective Communication

A communication pattern is called collective if it involves all processes in the group
of a communicator. MPI provides several routines for collective communication such
as, MPI_Bcast where a process, named root sends some data to all other processes
in the communicator. MPI_Scatter provides the possibility for a rank, defined as
root to send parts of some data to all other processes, whereas MPI_Gather each
process in the communicator can send data to a designated process.

Listing 1.6: Function signatures of MPI_Bcast, MPI_Scatter and MPI_Gather
int MPI_Bcast(void * buffer , int count ,

MPI_Datatype datatype ,
int root , MPI_Comm comm);

int MPI_Scatter(const int *sendbuf , int sendcount ,
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MPI_Datatype sendtype ,
void *recvbuf , int recvcount ,
MPI_Datatype recvtype ,
int root , MPI_Comm comm);

int MPI_Gather(const int *sendbuf , int sendcount ,
MPI_Datatype sendtype ,
void *recvbuf , int recvcount ,
MPI_Datatype recvtype ,
int root , MPI_Comm comm);

MPI also allows to aggregate the messages while sending it with a routine called
MPI_Reduce. The aggregation can be done by different functions specified
in MPI_Op. To name just a few, one can sum the values in the message up,
extract the maximum, the minimum, multiply them or use logical con- and
disjunctions. The aggregated message is collected by a user defined root process.
Listing 1.7 provides the signature for the routine.

Listing 1.7: MPI_Reduce allows applying aggregation functions on the data while
messaging it.
int MPI_Reduce(const void * sendbuf , void * recvbuf ,

int count , MPI_Datatype type , MPI_Op op,
int root , MPI_Comm comm);

If a communicator has a virtual topology, one can use a routine called
MPI_Neighbor_alltoall. Each process sends and receives the same amount of data
from all its communication partners. The information about the communication
partners for each process is stored in the communicator. For a Cartesian topology,
the communication neighbors will be the two closest processes along each dimension,
whereas for a distributed graph topology, the neighbors are simply the adjacent
processes. The function signature can be found in Listing 1.8.

Listing 1.8: Function signature of the MPI_Neighbor_alltoall routine
int Neighbor_alltoall(const void * sendbuf ,

int sendcount , MPI_Datatype ,
void *recvbuff , int recvcount ,
MPI_Datatype recvtype , MPI_Comm comm);

Those are just a few examples of the collective operations MPI provides.



Chapter 1 Page 21

(a) five-point stencil in 2 dimensions. (b) nine-point stencil in 2 dimensions.

Figure 1.2: Examples of the five-point (a) and nine-point (b) stencil

Synchronization

For some applications, it is important to synchronize the processes in a program at
certain points, for example when measuring the time needed for a subroutine. MPI
provides the user with such a function called MPI_Barrier, which takes as only input
a communicator. The barrier function terminates after all processes have entered it.

Listing 1.9: MPI_Barrier function signature.
int MPI_Barrier(MPI_Comm comm);

Stencils

Träff et al. [42] introduced the term isomorphic communication. It is a communication
pattern in Cartesian topologies specified for each process, by the same set of relative
coordinate vectors. The isomorphic communication pattern can be expressed by a
stencil, which is a set of vectors N = {r1, . . . , rk}. Each vector ri ∈ N specifies
the offset in each dimension (ri,0, . . . , ri,n) from the process.

A five-point stencil in 2 dimensions is the set of vectors describing the 4 closest
neighbors, in terms of the Manhatten distance and the point itself. A nine-point
stencil in 2 dimensions is the set of vectors describing the 8 closest neighbors and
the point itself. The five- and nine-point stencils can be seen Figure 1.2. We define
a general five-point or nine-point stencil to be a stencil in d dimension with the
closest 2d or 3d − 1 neighbors and the point itself.

A component stencil is a stencil which generates different components in the
Cartesian graph. On a 2D grid, each process would communicate with its closest
neighbors along the first dimension, see Figure 1.4a. In 3D, each process communicates
with its two closest neighbors in the first and second dimension, but no communication
is performed in the last dimension. In general, each process communicates with it’s
2 closest neighbors in each dimension from d1 up to dn−1.
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(a) Crank-Nicolson stencil in 2 dimensions.

(b) Five-point stencil in 2 dimensions with two
hops along the first dimension.

Figure 1.3: Example of the Crank-Nicolson (a) and five-point stencil with 2 hops in
the first dimension (b) in 2D.

For the diagonal stencil, the communication neighbors are only along the
diagonals. To be more specific, the relative neighbors are given by the set
of all permutations of {−1, 1} in the dimensions of the relative coordinate
vectors, see Figure 1.4b for a 2D example.

A stencil, which is an often used scheme in finite difference for solving par-
tial differential equations, is the Crank-Nicolson stencil [9]. It is essentially the
same communication pattern as in the component stencil, but with one addition.
Each process also communicates in the increasing direction of last dimension with
same pattern as in the first n − 1 dimensions, i.e., the set of relative coordinate
vectors is duplicated and in the last coordinates of the duplicates, we set the orig-
inal value of 0 to 1, see 1.3a for a 2D example.

We define a hop to be a set H ⊆ N of relative coordinate vectors
rh, that have the same orientation but different sizes. To be more precise,
let ri, rj ∈ H , then it holds that

ri · rj = ||ri|| · ||rj|| and ||ri|| 6= ||rj||. (1.2)

That is, the process has multiple communication partners in the direction given
by some specific direction. See Figure 1.3b for a five-point stencil in 2D with 3
hops in the first and the last dimension.

Inter-node and Intra-node Communication

A computation node is a set of computation units that share memory. It can be
composed of multiple sockets, each socket begin able to hold multiple cores. If
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(a) Component stencil in 2 dimensions. (b) Diagonal stencil in 2 dimensions.

Figure 1.4: Examples of a component (a) and diagonal (b) stencil in 2D.

two cores sit on the same node, they exchange data by using the shared mem-
ory. This process is called intra-node communication. If the two data-exchanging
processes sit on different computation nodes of the machine, we call that kind
of exchange inter-node communication.





Chapter 2

Introduction

Now that we have given the reader the necessary vocabulary, we can continue in
this chapter, by presenting the motivation for the topic of this thesis. Further, we
will propose a possible, formulation of the presented problem and conclude by giving
an overview of the structure and the remaining chapters of the thesis.

2.1 Motivation

In parallel computation applications, a main bottleneck is the communication be-
tween computation nodes in the network. The communication on a computation
node is multiple times faster than inter-node communication, see Figure 2.2 or Fig-
ure 2.1. That is why one should consider a good assignment of processes to the
computation nodes in order to achieve high performance.

We want to map processes with intensive communication as closely as possible in
the hardware hierarchy, ideally to the same computation node while maintaining the
load balance between the nodes. Unfortunately the mapping problem is NP-Complete
and has been shown to be equivalent to the graph embedding problem by Bokhari [4].
Thus, unless P=NP, we can only rely on good heuristics for large instances. Much
effort was put into good mapping software such as VieM [34] and Scotch [31]. Most
of these mapping software have as input the communication relationship between the
processes as a general graph. The developers of Scotch claim that the runtime is linear
in the number of edges in the communication graph and logarithmic in the amount
of nodes in the distance graph. If the communication graph can be modeled as a
much more structured Cartesian graph C and the distance graph D is symmetric and
hierarchical while the communication is isomorphic then we can perhaps hope to find a
scalable mapping heuristic. The highly structured problem may allow for an algorithm
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Figure 2.1: Inter- vs. intra-node communication performance. In the figure is
shown the discrepancy between the inter- and intra-node latency for point-to-point
communication. Figure taken directly from Mamidala et al. [24]

Figure 2.2: Different accumulated duplex ring bandwidth for communication on a
computation node and different communication patterns. Depicted are intra-CPU
(core-to-core and CPU-to-CPU) inter-node ring communication bandwidths. Figure
taken directly from Niethammer and Rabenseifner [29].



Chapter 2 Page 27

0 1

2

4

6

3

5

7

Dimension 2

D
im

e
n

si
o

n
 1 Node 1

Node 2

Figure 2.3: Example of a 4 × 2 Cartesian graph with a 5-point stencil and two
computation nodes with 4 cores.

that is not dependent on the number of vertices or edges in C, but instead on a
parameter that is typically smaller such as the dimension of the grid or the number of
partitions, while still producing satisfying results. Cartesian communication graphs
find a wide application in solving partial differential equations with finite difference
methods, see [1, 37]. MPI allows for processes to be reordered when instantiating
Cartesian and distributed graph communicators. As we will see, the reordering
functions of MPI do not yield any improvement over the default consecutive order of
the processes onto the nodes. In general, one can formulate the mapping problem as a
quadratic assignment problem (QAP), see Subsection 1.1.4 in Chapter 1 by modeling
the communication of the processes as a graph C and the distances between the cores
as a graph D. Minimizing the amount of inter-node communication is equivalent
to minimizing the objective function described in Equation(1.1).

2.2 Statement of the Problem

In this thesis we will look at reordering strategies in MPI of unweighted, directed
Cartesian graphs with isomorphic communication patterns. In a Cartesian graph
C, processes are represented by the vertices, while the communication edges for



Chapter 2 Page 28

each process are given by a stencil. A directed edge (u, v), representing processes u
and v, implies a source vertex u sending a message to the target vertex v. We will
ignore the details of the hardware interconnect, and assume that the communication
cost between each computation node is equal and more expansive than the inter-
node communication. When modeling the quadratic assignment problem, we will
assume that the distance between two cores i and j is zero, if they are on the same
computation node Di, j = 0, and one if they are on separate computation nodes
Di, j = 1. With this choice of parameters, the value of the objective function defined
in Equation(1.1) in Chapter 1 is exactly the number of inter-node communication.
We want to find a permutation π of the processes in C that determines the new rank
of i that is, π(i) in order to minimize J(C, D, π). We will focus on experimental
performance in terms of inter-node communication reduction of the algorithms and
their runtime. To be more precise, we will not give theoretical upper-bounds for
the deviation of the obtained solution from the optimum, i.e., we will not develop
approximation algorithms nor give a guarantee about the theoretical quality. The
main objective is to devise an algorithm that can improve on Gropp’s [13, 14]
reduction of inter-node communication, for arbitrary isomorphic communication
patterns, while still have a decent runtime, ideally not dependent on the number
of vertices and edges of the input graph C. The algorithms should scale well and
be easily portable to work on any multi-node machine running MPI.

2.3 Structure of Thesis
In Chapter 1 we give some basic definitions for graphs, grids, the quadratic assignment
problem and features of MPI. Related work is presented in Chapter 3, along the
explanation of an important algorithm of Gropp [14] representing the baseline for
our approaches. Greedy approaches to the problem are discussed in Chapter 4, while
a recursive approach is presented in Chapter 5. The comparison and evaluation
between the different algorithms presented in this thesis is shown in Chapter 6. We
conclude the thesis in Chapter 7 and give some perspective for future work.



Chapter 3

Related Work

In this chapter we present relevant research done on process mapping and rank
reordering techniques. First we give try to give the reader an overview of process
mapping approaches [15, 25, 26, 29, 36] developed specifically for or within MPI. We
proceed by giving a short summary of general graph mapping techniques [5, 34]
and communication aware partitioning using another library called CHARM++
[3]. The Vienna Mapping tool [34] (VieM) is described in more detail, since we
will compare the amount of inter-node communication obtained by the algorithms
developed in this thesis and VieM in Chapter 6, in order to get an estimate on
the performance of the developed approaches in comparison to a general graph
mapping software. We conclude this chapter with a detailed explanation of the
Nodecart approach developed by Gropp [13, 14] which forms the motivating baseline
for the development of this thesis. We include the Nodecart routine in all the
experiments done in Chapter 6 in order to see, if the communication aware mappings
in this thesis can improve on Gropp’s approach.

3.1 Mapping with MPI

In this section, we will introduce some process mapping approaches developed for or
within MPI. The goal is to give the reader a small overview of some research that has
been done in order for him or her to see the benefits of the work developed in this thesis.
The approaches of Mercier and Jeannot [25] and Subramoni et al. [36], described in the
Subsections 3.1.1 and 3.1.2 differ to the problem in this thesis in the regard that they
combine the extraction of the communication patterns and the process mapping, i.e.,
the communication pattern is not known in advance. Mirsadeghi and Afsahi [26], de-
scribed in Subsection 3.1.3 exploits the pattern of collective communication algorithm,
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while Niethammer and Rabenseifner[29], described in Subsection 3.1.4 give the user the
possibility to decompose the communication patterns in the basis of a Cartesian grid.

3.1.1 Distributed Graph Communicator Mapping

The approaches described in this section were developed for arbitrary virtual topologies,
i.e., unstructured graphs. We decided to include them, since our greedy approaches
presented in Chapter 4 are not restricted to a Cartesian topology and hence, could
also be applied to distributed graph topologies.

Hatazaki

Hatazaki [15] proposes an algorithm for the graph embedding problem of an unweighted
communication graph G onto the hardware topology, represented as a complete host
graph H (there exists a path between each pair of vertices). The main contribution is
the leveraging of symmetry in the host graph H. Similarly to our approach, Hatazaki
addresses the problem as finding a permutation π that finds a sufficiently small
value for the objective function defined in Equation (1.1), describing the weighted
communication. Note that with unit edge weight, the objective function is reduced
to the sum of distances between cores onto which processes have been mapped.

Hatazaki exploits the fact that processes on the same hardware level have the
same communication distance. With that assumption, the host graph H can be
modelled as a host tree. The leaf vertices of the host tree correspond to a list of
entities on the highest level of the hardware hierarchy, having the same pairwise
communication distance. Internal vertices store the number of subentities in the
leaves of their subtree. Edges of the tree are unweighted.

The mapping algorithm starts by assigning all processes to the root vertex of
the host tree. The processes are partitioned into k blocks, where k denotes the
number of children of the root vertex s.t. the sum of inter-block edges is as small
as possible. Hatazaki adopted the Kernighan-Lin heuristic [12, 21] for improv-
ing the partition of the communication graph. This step is repeated recursively
to the blocks and subtrees of the root’s children, until all processes have been
assigned to the leaves of the host tree.

Hatazaki evaluated his approach by measuring the performance in communica-
tion for a five-point stencil exchange on a Cartesian grid. The machine was able
to host up to 1024 processes. He measured the reduction of inter-node commu-
nication compared to the default order of MPI and could obtain values of up to
75%. Further, Hatazaki was able to reduce the time needed for the communica-
tion up to 90% for message sizes of 100 000 B.
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Träff

Träff [40] implemented an algorithm specifically for the NEC SX-series of parallel
vector computers. In his model, the target machine is described by an undirected, com-
plete, weighted host graph H and an undirected, weighted communication graph C.
Assuming that the machine has a hierarchical communication pattern, the host graph
H can be described as a tree. The leaves correspond to processors, while internal ver-
tices denote the communication distance between the processors in different subtrees.

Träff depicts the equivalency between the graph embedding problem, for unweighted
guest graphs on weighted host graphs and the graph partitioning problem. He does
this, by showing that the embedding problem is special case of the weighted graph
partitioning problem with a special correspondence of the objective functions. Thus,
by finding an optimal solution to the graph partitioning problem, he solves the graph
embedding problem to optimality. Therefore, he can solve the graph embedding
problem for a communication graph C onto a hierarchical system by recursively
partitioning C into the number of entities on each hierarchy level.

Träff uses Kernighan-Lin-like local-search technique [41] to improve on an ini-
tial k-partition, in which the process of finding a sequence of vertex moves is no
longer dependent on the number of blocks k. The algorithm was designed not
only to reduce the total-cut, but also to ensure that the max-cut (the bottleneck)
can only be decreased. Even though Träff’s approach is centralized, some aspects
of the local-search techniques can be vectorized.

The evaluation of the mapping is done on Cartesian and a variety of general graphs.
The communication time for a neighbor data exchange routine was measured and
Träff could show that the reordering schemes and the communication time was smaller
than for virtual topologies without reordering. For some general graph instances, he
could even measure an increase of communication time to a factor of almost nine.

Mercier and Jeannot

Mercier and Jeannot [25] present a technique for rank reordering specifically for dis-
tributed graph topologies in MPI. Even though their approach is very flexible, it is fully
centralized. The algorithm works as follows: First a pre-run of the MPI-application
has to be done, in order to gather information about the communication patterns
between the processes. From the communication information, a communication graph
can be built. Next, they gather information about the hardware using a library called
HWLOC [7] and store this information in a hierarchical tree representing the distances
between cores. The root can then proceed to calculate a process reordering based on
the TreeMatch algorithm [18]. The TreeMatch algorithm works in a recursive, bottom-
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up manner, i.e., from the cheapest to most expansive level in the communication
hierarchy, by grouping the processes on each hierarchy level in a way that minimizes
the remaining communication on the upper levels of the hardware hierarchy.

They measure the improvement of the proposed technique with two experiments
on a cluster with 8 nodes, having 8 cores each. In the first experiment, 8 rings
consisting of 8 processes exchange data in a circular manner, i.e., within a ring, a
designated process sends data to a neighbor which in turns sends it to its neighbor
and so on until the starting process receives the data again, after which the rings
exchange the data over a designated process in each of them. They reported an
improvement of 10 to 20% compared to the standard, consecutive MPI mapping in
communication time, both in terms of data size and number of messages send. The
second experiment is based on a real application of astrophysics involving compu-
tational fluid dynamics code called ZEUS-MP [16]. It involves a three-dimensional
computation domain, which is decomposed into tiles where boundary elements ex-
change data. ZEUS-MP originally uses a Cartesian communicator without the
reordering flag (with the standard rank ordering). Mercier and Jeannot measured
communication performance improvements of up to 15%.

3.1.2 Switch Traversal Minimization

Subramoni et al. [36] developed a two-step mapping tool in order to minimize the
number of switch traversals in a hardware interconnect and maximizing the amount
of intra-node communication. They first retrieve the amount of switch traversals for
each node pair using utilities from the OFED distribution [30]. The more switch
traversals is needed between to end-points, the greater the communication latency.
After gathering the hardware details, the Neighbor-Joining algorithm is used to
construct a binary tree incorporating the distances between the computation nodes.
Even though they focus on tree-based topologies, they mention that their idea is
generalizable to other types of networks. The Neighbor-Joining method [32] was
originally developed for the construction of phylogenetic trees in biology and is a
bottom-up approach, joining nodes with the smallest distances until only one node
is left. The binary tree is then constructed by attaching all node pairs that were
joined to the node they created. Information about the communication patterns is
gathered in a pre-run with profiling tools. A top-down approach is done to recursively
perform the mapping with an external graph partitioner software, with the goal to
minimize long distance communication over the network and maximizing inter-node
communication cost. Since a single execution of a partitioning software may not yield
a balanced, high quality mapping, multiple runs are done until such a mapping is
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achieved. In the paper, Subramoni et al. evaluate different aspects of the mapping
tool. We will focus on the performance benefits for applications, as they are the
most relevant to us. They first benchmarked the communication improvement of a
general five-point stencil in 3D, with 512 processes and small (2000 B) to medium
(32 000 B) data exchange sizes, showing improvements in message exchange time of
up to 40% over the default mapping. The also tested the improvement of inter-node
communication over the default MPI mapping for different applications, namely AWP-
ODC [10], a model to simulate wave propagation in earthquakes, which also uses
a five-point communication pattern in 3D and Hypre [11], which is an open-source
software of high performance, parallel, linear equations solvers and preconditioners.
Their approach improved the amount of intra-node communication from the standard
rank order of 33% to 66% for AWP-ODC and from 45% to 53.3% for Hypre.

3.1.3 Reordering for Collective Communication

Mirsadeghi and Afsahi [26] propose topology aware rank reordering in MPI specifi-
cally for collective communication. More precisely, they exploit the communication
pattern of collective, hierarchical algorithms such as Recursive Doubling and non-
hierarchical algorithms such as Ring [38], as they are the most commonly used
algorithms for MPI_Allgather, which is a collective routine that enables to share
local data held by the processes across all processes.

Recursive Doubling works roughly as follows; processes communicate over log2 P
phases, where P is the number of processes in the communicator. In each phase
t, process i exchanges data with process i ⊕ 2t where ⊕ stands for the binary
XOR operator. The amount of data that two processes exchange increases over the
communication rounds. The ring algorithm runs in P − 1 rounds. In each round t,
process i receives data from process i − 1 and sends data to process i + 1.

Since the communication partners are known, the reordering can be calculated
without the specification of a communication graph. They use the HWLOC [7] library
and InfiniBand tools to gather information about the distances between the computa-
tion nodes. Their approaches reorder the ranks in such a way that the pairs of processes
exchanging the largest amount of data are positioned on nodes close to each other.

They benchmark the latency of the MPI_Allgather routines developed by them,
from the standard MVAPICH2 and from mappings obtained by the Scotch Graph
Partitioning Library [31] with the OSU Mico-Benchmarks [39]. As initial rank order,
they used four different schemes that are common and greatly impact the default
performance of the MPI_Allgather algorithms. The four base communicators are
built, using a consecutive or round-robin rank assignment on the nodes and on the
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sockets separately, i.e., consecutive rank assignment to the nodes and consecutive
or round-robin assignment to the sockets or round-robin assignment to the nodes
with consecutive or round-robin assignment to the sockets. They benchmarked with
4096 processes with a maximum of 256KB in message size. For non-hierarchical
approaches, they improve the latency up to 67% for message sizes bellow 1KB and up
to 78% for message sizes larger than 1KB, for different initial rank orders. They note
that Scotch does not perform well compared to their and the default rank orders. For
hierarchical approaches, they could show an improvement of up to 30% for message
sizes below and above 1KB. A drawback of this method is that if the original ranks
have potentially large data stored locally, a reordering of the ranks specifically for
the broadcast operation can result in a lot of non-local data access or intensive
communication between the original and the newly assigned ranks. For large message
sizes, this operation outweighs all the gain obtained from the reordering approach.

3.1.4 Cartesian Communicator Mapping

Rabenseifner and Niethammer [29] address three problems in the current MPI Version
for the mapping of processes in Cartesian communicators for applications with
Cartesian halo (region to store data from other subdomains) communication patterns.
First, they note that the dimension sizes created by MPI_Dims_create is independent
of the actual application grid1, i.e., it only tries to minimize the difference in dimension
sizes, instead of minimizing the communication over the subdomains. Secondly, the
factorization of the MPI processes is independent of the underlying hardware and
finally they remark that the default consecutive mapping of MPI is suboptimal. Their
approach solves the three problems combined, i.e., the domain decomposition is no
longer independent of the hardware topology. For that purpose, they propose a
multi-level approach. While they mentioned in their paper that their technique is
generalizable to any number of hardware hierarchies, the highest layer presented
in the paper is that of the computation nodes. Their algorithm can work his way
down in the hardware hierarchy from the computation nodes, to the NUMA domains,
up to the cores. Since the communication between the computation node is the
slowest, they minimize it first, by finding a decomposition of the number of nodes
into a Cartesian grid s.t. the surface between the domains is evenly balanced. To
be more specific, they decompose the number of nodes N into a

N =
d∏
i=1

ni (3.1)

1The data grid.
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Cartesian topology. They formalize a communication cost for exchange of
halo regions for each subdomain with

c = 2
d∑
i=1

cihi

d∏
j=1&j 6=i

gj
nj
, (3.2)

where ci is a communication cost factor in dimension i, hi is depth of the halo in
dimension i, while gj and nj describe the dimension sizes of the application grid
and the node grid in dimension j. The intuition behind this formula is simple, it
expresses the weighted surface of the subdomain that is communicating to other
subdomains. Note that they assume the same communication cost factor in both
directions of i, enforcing the approach to consider symmetric communication in the
dimensions. With this formalization, they factorize the number of nodes N under
the Constraints 3.1 and 3.2, while minimizing the latter.

The technique for the next hardware levels is the same, but instead of operating
on the original grid, the mapping is done on the induced subgrids by the factorization
of the step before, with the adapted communication cost function

c′ = 2
d∑
i=1

cihi

d∏
j=1&j 6=i

g′j
pj
, (3.3)

where g′i = gi
ni

and P =
∏d

i=1 pi is the number of cores per node. This multi-
level approach requires each of the sublevels to be of equal size, i.e., the hard-
ware interconnect should be symmetric.

Each process calculates its rank and coordinates on every hardware level passed
by the algorithm to combine those ranks to find its new overall rank and coordinate
in the original process grid. They hope to make this routine part of the MPI-
Standard under the name MPI_Cart_create_weighted.

In order to find good domain decompositions, the user provides to the function
MPI_Cart_create_weighted the communication weights in each dimension of the
application grid or a constant indicating equal weights.

They compared the runtime of MPI_Dims_create combined with MPI_Cart_create
to MPI_Cart_create_weighted with equal weights and data grid dimension size
based weights for 3 dimensional grids with grid size ratios of 1 : 2 : 4.
They measured a decrease of the halo size of up to 32% and a reduction
in communication time of up to 77.3%.
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3.2 Other Mapping Approaches

In this section we will give a short overview of mapping techniques proposed
by Brandfass, Alrutz and Gerhold which use the Müller-Merbach algorithm com-
bined with local search on which Schulz and Träff improve on. For the sake
of diversity, we include a mapping approach taken with another library called
CHARM++. The first two approaches work for general graph structures, whereas
the latter is designed for Cartesian topologies.

3.2.1 Brandfass, Alrutz and Gerhold

Brandfass, Alrutz and Gerhold [5] propose a slight modification to the Müller-
Merbach algorithm [28] for assigning facilities to locations in the QAP problem,
see Section 1.1.4 in Chapter 1 combined with the local search technique proposed
by Heider [17]. The mapping of the communication graph onto the host graph
is formulated as a QAP. Müller-Merbach takes as input a matrix containing the
communication information between each pair of processes and a complete distance
matrix containing the pairwise distances between the cores. In the first round, the
total communication is computed for each process, as is the total distance for each
core. The process with the maximal amount of communication is then mapped onto
the core with the smallest total distance. In the next rounds, only the summed-up
communication load between already assigned and non-assigned processes and the
summed-up distances between assigned and unassigned cores is calculated, again
assigning the process with the biggest communication load to the core with the
smallest summed-up distance. Heider’s approach belongs to the class of local search
algorithms and takes in an initial feasible solution for the QAP. It tries to improve
the solution with an exchange of assignments between pairs of processes i and i+ 1
in cyclic manner until no further improvement is found.

In order to reduce the runtime of the algorithm, Brandfass, Alrutz and Gerhold
substitute the communication matrix C and the distance matrix D by symmetric
matrices C := 1

2
(C + CT ) and D := 1

2
(D +DT ) since it does not change the outcome

of the objective function, see Equation (1.1), but reduces the amount of arithmetic
operations. This solution serves as the initial feasible input for the local search.
Further, they neglect pairs of processes, for which the objective function does not
change, i.e., processes that are assigned to the same computation node are not
swapped. As a further improvement of the runtime, they reduce the search space
of the algorithm by partitioning into subdomains and running the local search in
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each of the subdomains of the search-space successively. This of course limits the
algorithm from finding solutions outside of the search-space.

They benchmark the approaches on the flow solver of the DLR TAU code [35]
with varying input graph sizes. They first partition the input graph using different
initial partitioning techniques (recursive coordinate bisection and graph partitioning),
map the partitions using the Müller-Merbach scheme and use local search to improve
the quality of the mapping. The compared the default, initial mapping of MPI to a
mapping only using the Müller-Merbach scheme without local search and to Müller-
Merbach with local search. While they note that the initial graph partitioning method
has no big influence onto the improvement, their approach is able to find solutions
which reduce the objective function value by 36% compared to the initial mapping.

3.2.2 Vienna Mapping

Schulz and Träff [33] developed mapping techniques based on Brandfass et al.. The
authors assume sparse communication patterns and a symmetric hardware hierarchy,
i.e., each entity in some level of the hierarchy as the same number of subentities. The
hardware hierarchy can therefore be described using strings in the following way, let
s = e1 : e2 : · · · : em be a string describing the m-level hierarchy of the underlying
hardware system and c = c1 : · · · : cm be a string describing the distance between
entities in different hardware levels. To be more precise, the string s describes how
many entities are on each level of the hardware system, i.e., e1 could denote the number
of cores per NUMA domain, while e2 denotes the number of NUMA domains on a
node, e3 the number of nodes and so on. The string c describes the distance between
two entities that are in different subsystems. These assumptions allow to use a graph
representation of the communication matrix C, since the communication matrix is now
sparse. Further, it is not necessary to store the complete distance matrix, but instead
one can use a tree representation to describe the distances between different cores.

An additional speed-up is obtained, by reducing the search space. This is done
by only allowing swaps between processes that actually communicate with each
other, i.e., only processes that are connected by an edge in the communication
graph C. The authors extend the definition of the search space, by allowing swaps
between processes having a distance of at most k in the graph theoretical sense,
i.e., the length of the unweighted, shortest path between two processes is at most k.
These assumptions and data-structures greatly reduce the time needed to calcu-
late and update the objective-function value.

Instead of using Müller-Merbach to obtain an initial solution, the authors propose
two different techniques, a bottom-up and top-down approach. The top-down approach
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works approximately by first partitioning the input communication graph C into em
perfectly balanced parts and use mapping tools, combined with local search techniques
in order to find a permutation π that minimizes the objective function value defined
in Equation (1.1) in Chapter 1. In the next step, each of the em partitions are
again partitioned and mapped into and onto em−1 parts. This is done until all
hierarchy levels have been mapped. The bottom-up approach works similarly, by
first partitioning the input communication graph C into |V |/e12 perfectly balanced
parts and map those on a unique system entity being able to host e1 entities. These
blocks are contracted and the partitioning and mapping step is repeated until the
last graph C ′ is partitioned and mapped onto |V ′|/em blocks.

In experimental evaluations, the presented techniques measured an average im-
provement of 52% in the objective function value using the top-down approach
compared to Müller-Merbach, with the same local-search neighborhood. While this
is very promising, they were also on average slower by a factor of 194 than Müller-
Merbach, due to the expansive perfectly-balanced graph partitioning techniques.

3.2.3 Mapping with the CHARM++ Library

Bhatele and Kalé [3] use a library called CHARM++ [19, 20] to decompose the
computation tasks into virtual processor objects called chares. The granularity of
the virtual objects can be higher than of the computation tasks, i.e., there can be
more chares than cores. The chares are stored in a chare array, which lies on top
of the underlying data array of the problem. To be more specific, each chare is
responsible for a connected part in the data array. The individual chares in the
chare array are then mapped to the cores of the physical machine. A mapping of
the chares can be specified by the user. The mapping technique suggested in the
paper is specific for a five-point stencil in 2D or 3D. The main goal is to map as many
communicating chares as possible to the same physical core while preserving load
balance. For that purpose and under the assumption that communicating chares are
located next to each other in the chare array, the array of chares is decomposed into
equally sized boxes. Boxes that communicate intensively are mapped onto nearby
processors. The authors compare their topology aware mapping for the five-point
stencil in 2- and 3D against a round-robin mapping. In the best case, for a chare grid
of size 16× 16× 16, a data grid of size 1024× 512× 512, 2048 processes and over
1000 data exchanges between communicating chare elements, the authors were able
reduce the communication time by a factor of two over the round robin mapping.

2Recall that V is the set of vertices in a graph and therefore |V | is the number of vertices



Chapter 3 Page 39

3.3 Gropp’s Algorithm as the Baseline
Gropp developed an algorithm [13, 14] to create Cartesian communicators in MPI
using node information. Gropp pointed out that passing the reordering flag to
MPI_Cart_create does not yield any improvement over the default mapping of MPI.
He proposed a simple solution; reordering the processes within the communicator
to maximize inter-node communication, while ignoring the rest of the hardware
interconnect. While not optimal, it yields significant improvements of the default
mapping of MPI for many instances, with little need for communication between the
processes. Two assumptions are made for the algorithm; first, each computation node
has the same number of processes and second, the function MPI_Comm_split_type
with type MPI_COMM_TYPE_SHARED creates communicators, where each of the processes
in a group of the newly created communicator belong to the same node.

The algorithm works in the following way.

• Use the MPI_Comm_split_type function to identify the nodes and create a
leader communicator, consisting of one process per node.

• Communicate to each process the number of nodes, i.e., the size of the leader
communicator.

• Create a two-level decomposition of the grid, one level consisting of the node grid
and the other being the grid of processes on the node. For that purpose, Gropp
uses his own factorization which is explained below, since MPI_Dims_create
will not always produce compatible grid decompositions.

• With the grid of the computation nodes and the grid of the processes on a node,
each process can calculate its new rank without the need for communication.

• Given the new coordinates of the processes, a new communicator can be created
with all processes specifying the color to be zero and their new rank as key.

The reason why Gropp uses his own factorization is that he needs to ensure that
the dimensions of the node and the dimension of the processes per node grids are
compatible with the dimensions given by the overall grid. To be more specific, for
every dimension i the product of the node grid size in dimension i, dnode, i, and the
process grid size in dimension i, dprocess, i, must equal to the number of processes in
dimension i, di of the original grid, i.e., di = dnode, i · dprocess, i. This constraint is
not always fulfilled by the dimension sizes created by MPI_Dims_create. In order
to achieve this, he factorizes the number of processes per node into primes and
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assigns those to the intra-dimensions (dimensions of the processes per node grid)
while minimizing the sum of inter-node dimension sizes. The pseudocode for the two
routines, taken directly from Gropp [14] can be found in Algorithm 2 and Algorithm 1.

As one can see from the pseudocode, no heavy computation is done so the
algorithm runs very fast and scales well. In Figure 3.1, we can see an example of
an optimal process reordering by Gropp, for a 4 × 4 grid and a five-point stencil.
The nodes are represented by the grey rectangles.

While Gropp’s algorithm provides good mappings for the general five- and nine-
point stencil, it is oblivious to more general communication patterns. We want to
improve on his idea, by incorporating a reordering criterion based for any isomorphic
communication patterns given by a stencil. The hope is that we can exploit the
structured communication patterns in order to avoid mappings that are worse than
the default mapping. An example for a rank reordering by Gropp’s algorithm that
performs worse than the default mapping can be seen in Figure 3.2.

Gropp measured the performance of his approach with a general five-point stencil
on a 2- and 3-dimensional mesh and compared it to the default mapping of MPI.
The tests were performed on three different systems with up to 4096 processes. In
each experiment, data of size up to 100KB were exchanged over 20 iterations. Each
experiment was repeated thirty times. Gropp reported the average and the minimum
running time for each experiment. He reported improvements in the computation
rate (GFLOP/s) over the Cartesian communicator without reordering up to 11%.
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Algorithm 1: 2-level decomposition
Input: Dimension sizes dims,
number of dimensions ndims,
number of nodes nnodes
Result: Dimensions of the processes on computation node grid

2-level decomposition(dims, ndims, nnodes)
1 factors← Prime factors of nnodes
2 for i← 0 to ndims do
3 intradims[i]← 1
4 remaindims[i]← dims[1]

5 end
6 while nnodes > 1 do
7 //Find largest prime factor and remove it from factors
8 fac←largest prime factors of factors
9 //Find index j s.t. fac divides remaindims[j] and remaindims[j] is larger

than any other remaindims[k], where fac also divides remaindims[k].
10 intradims[j] ← intradims[j]·fac
11 remaindims[j] ← remaindims[j]

fac

12 end
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Algorithm 2: MPIX_Nodecart_create
Input: Old communicator oldcomm,
dimension sizes dims,
number of dimensions ndims
Result: New communicator with Gropp’s rearrangement nodecart comm

MPIX_Nodecart_create(oldcomm dims, ndims)
1 //Find the nodes and create node communicator nodecomm
2 MPI_Comm_split_type(oldcomm, MPI_COMM_TYPE_SHARED, rank,

MPI_INFO_NULL, &nodecomm)
3 //Create leader communicator
4 MPI_Comm_rank(nodecomm, &nrank)
5 color ← MPI_UNDEFINED
6 if nrank = 0 then
7 color ← 0
8 end
9 //Create the leader comm consisting of one process per node

10 MPI_Comm_split(oldcomm, color, oldrank, & leadercomm)
11 //Broadcast the number of nodes
12 if color = 0 then
13 MPI_Comm_size(leadercomm, &nnodes)
14 end
15 MPI_Bcast(nnodes, 1, MPI_INT, 0, nodecomm)
16 //Calculate the grid sizes for the nodes and the processes
17 intradims ←2-level decomposition(dims, ndims, nnodes)
18 interdims[i] ← dims[i]

intradims[i]

19 //Find coordinates in virtual grid
20 //Extract the intercoordinate from the rank in leadercomm
21 //Extract the intracoordinate from the rank in nodecomm
22 coords[i] ← intracoords[i] + intercoords[i]∗ intradims[i]
23 //Calculate the rank of calling process and create new communicator
24 rr ← coords[0]
25 for i← 1 to numdims do
26 rr ← rr · dims[i]+coords[i]
27 end
28 MPI_Comm_split(oldcomm, 0, rr, & nodecartcomm)
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(a) MPI’s default mapping.
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(b) Gropp’s reordering strategy.

Figure 3.1: Assignment of 4 × 4 grid with a five-point communication pattern
onto four nodes, with four cores each. The default mapping of MPI, (a) maps
the processes consecutively onto the computation nodes, resulting in a total of
24 inter-node communication edges. Two nodes have the maximum of inter-node
communication edges per node, which is 8. Gropp’s rearrangement (b) results in a
mapping, producing 16 inter-node communication edges in total and all nodes having
4 inter-node communication edges, thus improving over the default mapping.
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(b) Gropp’s reordering strategy.

Figure 3.2: Assignment of 4× 2 grid with a five-point communication pattern onto
two nodes, with four cores each. The consecutive default mapping of MPI, (a) results
in a total of 4 inter-node communication edges and two nodes having 2 inter-node
communication edges. Gropp’s rearrangement (b) on the other hand results in a
mapping producing 8 inter-node communication edges in total and all nodes having 4
inter-node communication edges.





Chapter 4

Greedy Algorithms

In this chapter, we will cover two greedy approaches that we developed to assign
the processes to the computation nodes. We start with a very trivial, centralized
greedy method in which we use a priority queue to assign ranks to the computation
nodes. We proceed by extending that technique to a distributed approach, in which
we find a set of processes, which is the size of the number of nodes N , in which each
process is responsible to assign ranks to a node in parallel. Both of the methods
presented assume that there is the same amount of processes pnode on each node.
They could easily be adapted to handle various computation node sizes.

4.1 Centralized Greedy Approach

This approach does not take advantage of the Cartesian graph structure, nor the
structure of the communication. It seems to be the straightforward thing to do for a
general graph, and thus this approach as the next, can also be used for any topology.
We will see in Chapter 6 that due to its obliviousness to the structure of the problem,
the approaches here will perform worse than the method described in the next chapter.

4.1.1 Motivation

The first intuitive idea is to use a centralized approach to greedily assign the ranks to
the computation nodes. The greedy step consists in irreversibly assigning a process
with maximal number of neighbors already on the computation node to the node.
This can easily be done with a priority queue. The priority of the ranks in the
queue is determined by the number of its neighbors that are already assigned to
the computation node and the number of neighbors it has in the queue. A tie is

45
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4.1: Motivating example for the priority of process assignments for a five-point
stencil. (a): A first vertex (green) is assigned to the computation node. The neighbors
of the assigned rank are enqueued (grey). (b): One of the vertices in the priority queue
is assigned to the computation node and its neighbors are put into the queue. (c):
We want to make sure that the vertex with the most neighbors on the computation
node and in the priority queue is assigned next. (d): Assign again the vertex with
the most neighbors on the computation node and in the queue to the computation
node, trying to maximize the number of communication edges on the node.
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broken by prioritizing the smaller rank, assuming that the ranks are initially mapped
consecutively to the computation nodes as in the default assignment of MPI. Note
that we can always ensure this by creating a custom communicator. An important
feature of this priority definition is the strictly increasing value of the key, i.e., the
priority of a rank for a node cannot decrease. The idea behind this priority criterion
is to ensure to assign a subgraph to the computation node that has as many edges
as possible between the processes, ideally a clique. In Figure 4.1 a visualization
on how the priority queue should work is presented.

The calculation of the permutation order can in principle be done by any process.
In our design, we always choose the process with rank 0 (the root) to compute the
reordering. The algorithm will iterate over all computation nodes, assigning the
ranks in order given by the priority queue by repeatedly extracting the rank with
the highest number of neighbor on the node and in the queue. In order to make sure
that all processes are assigned exactly once, the root process keeps track of already
assigned ranks. It stores an array of integers consisting of the new ranks. To be
more specific, the new rank of process i is stored in position i of the array. The array
containing the new ranks will be broadcast to all other processes, after termination
of the computation. At the beginning of the algorithm the priority queue is empty
and the root enqueues itself. After its assignment (since it was the only element
in the queue) all of its neighbors are pushed into the priority queue, and the next
suitable rank is extracted. This is done until all ranks have been assigned.

4.1.2 Pseudocode

The full pseudocode for the complete approach is depicted in Algorithm 3.
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Algorithm 3: Centralized Greedy Algorithm
Input: grid g with dimension sizes (d1, . . . , dn),
stencil s = (r1, . . . , rn),
number of nodes N ,
number of processes per node pnode,
rank of root rankroot

Result: Array with the new ranks new ranks
greedy central(g, s,N, pnode, rankroot)

1 index← 0;
2 //array containing the priority for each rank, initially zero
3 priority[i]← 0
4 pq ← priority queue;
5 pq.enqueue(rankroot);
6 foreach Node do
7 while Node not full do
8 if pq not empty then
9 best rank ← pq.top();

10 else
11 best rank ← next smallest unassigned rank;
12 end
13 if best rank is unassigned then
14 foreach neighbor ∈ N(best rank) do
15 if neighbor is unassigned ∧ neighbor /∈ pq then
16 //Since newly discovered rank, add one to priority
17 priority[neighbor]← 1
18 pq.enqueue(neighbor);
19 foreach neighbor of neighbor ∈ N(neighbor) do
20 if neighbor of neighbor ∈ pq then
21 priority[neighbor]← priority[neighbor] + 1
22 priority[neighbor of neighbor]←

priority[neighbor of neighbor] + 1
23 end
24 end
25 end
26 end
27 new ranks[index]← best rank;
28 index← index+ 1;
29 end
30 end
31 pq.clear();
32 pq.push(next smallest unassigned rank);
33 end
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4.1.3 Runtime Analysis

The complexity of Algorithm 3 depends on multiple parameters, i.e., the number of
computational nodes N , the number of processes on each computation node pnode,
the number of dimensions d and the size of the neighborhood k.

We need to know all the communication neighbors for all processes. For that
purpose, we can use the stencil to calculate the coordinates of the communication
neighbors. With this information, we can use MPI_Cart_coords routine to extract the
rank of each neighbor. The extraction of the neighbors can be done in a preprocessing
step in O(kPd) steps, where P is the total number of processes. This is because,
we have to iterate over all processes P , the k-neighborhood of each process and for
each neighbor extract the coordinates in all the dimensions d.

For an efficient look-up of the priority, we store the number of neighbors on the
node and in the queue in an array, updating only when we encounter new ranks.
Removing the best rank in the priority queue takes O(log |pq|) steps, where |pq|
denotes the number of elements in the queue. After which we have to iterate over
all k-neighbors of the best rank, inserting them into the queue and adjusting their
priority. With an appropriate data structure, the cost of inserting the neighbors
and adjusting the priority can be done in O(1) steps, see Brodal, Lagogiannis and
Tarjan [6]. For each neighbor of the best rank, we again have to iterate over all
k-neighbors, since newly enqueued ranks will change the priority of already enqueued
ranks, resulting in O(k2) steps for the priority adjustment. The priority is only valid
for one computation node, so we have to reset it after the rank assignment of a node is
complete. Every neighbor of the processes assigned to the node have been visited by
the algorithm, and therefore have a different value in the array holding all priorities.
For the next run, we need to reset these values, otherwise we introduce a bias for these
ranks. By remembering which processes have been visited, we are able to reset the
priority array in at most O(kpnode) steps. This leads to a total theoretical runtime of

O(kPd+N(pnode(log(|pq|) + k2) + pnodek)). (4.1)

In the worst case, for any pair of processes u, v in the priority queue, there is
no edge (u, v) in the Cartesian graph. This leads to each process having (k −
1) neighbors in the queue, resulting after the node fill-up in O(kpnode) processes
in the priority queue. Using this we can write

O(kPd+N(pnode(log(kpnode) + k2) + pnodek)) =

O(kPd+Npnode log(kpnode) +Npnodek
2 +Npnodek) =

O(kPd+Npnode log(kpnode) +Npnodek
2)

(4.2)
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Since the total number of processes is given by P = Npnode, we can write Equation (4.2)
as

O(kPd+ P log(kpnode) + Pk2). (4.3)

We implemented the algorithm in C++ and used routines in the standard library
for the priority queue.1 The implementation of these does not allow for insertion
and increase key routines in O(1) steps, neither does it support finding an ele-
ment in O(log(|pq|)) steps, forcing us to resort the queue after the priorities of
the ranks have changed. This leads to a runtime of

O(kPd+ Pkpnode + Pk2). (4.4)

Since this approach did not perform well in the evaluation in Chapter 6 in terms of
improvement in the amount of inter-node communication cost, we did not bother
to introduce further improvements to the runtime.

4.2 Distributed Greedy Algorithm

The approach presented above is obviously not scalable. Hence, we will first motivate
the need for an improvement, describe how to extend the greedy approach and
proceed by giving a high level description in form of pseudocode.

4.2.1 Motivation

In order to improve on the fully centralized approach presented above in terms of
scalability, we can find a set of processes that use the same greedy technique to
fill-up the computation nodes individually. That is, the set should be of the size of
the number of computation nodes, where each process is then responsible to fill-up
a node. This would allow to fill-up the nodes in parallel. Since we want to avoid
communication between the processes and overlap in the assignments, the processes
in the set should be as far away as possible from each other in terms of stencil
directions, i.e., we want to find a set of vertices in the Cartesian graph induced
by the stencil communication on the Cartesian grid with maximal distance. For
that purpose, we can repeatedly start a breadth-first search from an initial rank
and always add the last discovered point to the starting set of the next round until
the starting set has the size of the number of the computation nodes. Again, we

1We used a normal std::vector and the functions std::make_heap, std::heap_push and
std::heap_pop, see https://en.cppreference.com/
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assumed that the ranks were assigned consecutively to the computation nodes and
choose 0 as initial rank for the BFS. In the current implementation, all processes
perform the BFS search in order to determine whether they are part of the initial
set. Since the performance in terms of inter-node communication reduction of this
algorithm was even worse than the centralized greedy approach and the input graph
sizes are small, we did not parallelize the breadth-first search.2

After the starting set of processes is determined, each process in the set can use
the technique presented above to fill-up a node. The results of the local fill-up is
broadcast to all processes in order to make sure that each rank has been assigned
exactly once. Since the rank assignment was performed without any communication
between the processes, it might well be that some rank have been assigned to
several nodes, while others were not assigned at all.

Given the complete new reordering, we can extract the ranks that have been
assigned multiple times and the ranks that have not been assigned to any node. There
are several strategies on how to assign the unassigned ranks to the computation nodes.
If we were only interested in good partitions in terms of inter-node communication
cost, we could assign each unassigned rank to the computation node which holds
the maximum number of communication neighbors. If this node contains only ranks
that have been assigned once, i.e. there are no duplicates, we would have to unassign
such a rank, not decreasing the total number of unassigned nodes. We could repeat
this process until all ranks have been assigned. Estimating the runtime for such
an approach is quite difficult, but small practical experiments have shown that this
method is too expansive, so we did not pursue it any further. Instead, we reduced
the potential assignment space of the unassigned ranks to merely those ranks, which
have been assigned multiple times. For each unassigned rank u, we compared it to
all the duplicate ranks d and assign it to the node where the difference in inter-node
communication is maximal. That is, for each unassigned rank u we count the number
of off-node communication partners if it would be assigned to a process which is
currently assigned to a duplicate rank d. We do the same for the process holding the
duplicate rank d. Let cu and cd be the amount of off-node communication partners of
the unassigned process u and the duplicate rank d then we want to maximize

f(cu, cd) = cd − cu. (4.5)

2There are several techniques for parallelizing BFS, see [2, 23] to name just a few.
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4.2.2 Pseudocode

The pseudocode for the distributed greedy approach is depicted in Algorithm 4, the
adapted version of the greedy fill-up strategy can be found in Algorithm 6 and the
routine to make sure every rank has been assigned in Algorithm 5.

Algorithm 4: Distributed Greedy Approach
Input: grid g with dimension sizes (d1, . . . , dn),
stencil s = (r1, . . . , rn),
number of nodes N ,
number of processes per node pnode,
Result: Array with new ranks new ranks

distributed-greedy-fill-up(g, s,N, pnode)
1 //Check if calling process is in node set
2 starting set← repeated breadth-first search(g, s,N)
3 if my rank ∈ starting set then
4 //Fill up local node with calling process’s rank as starter
5 local assignment← local fill-up(g, s, pnode,my rank)

6 end
7 //Broadcast result to everyone new ranks← Broadcast(local assignment)
8 //Check whether all ranks have been assigned exactly once
9 global check-up (new ranks)
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Algorithm 5: Global Check-Up
Input: Array of ranks ranks with potential duplicates and unassigned ranks
Result: ranks where every rank is assigned exactly once

global check-up(ranks)
1 //Extract duplicate or unassigned ranks
2 duplicate ranks← duplicates in ranks
3 unassigned ranks← unassigned ranks of ranks
4 foreach u ∈ unassigned ranks do
5 //biggest gain of assigning u to d
6 biggest gain← min
7 foreach d ∈ duplicate ranks do
8 //We can extract the Node ID from the indices of d
9 foreach index of d ∈ ranks do

10 //Count off-node neighbors for both ranks
11 cd ← off-node neighbors of d
12 cu ← off-node neighbors of u
13 if cd − cu > biggest gain then
14 biggest gain← cd − cu
15 best index← index

16 end
17 end
18 end
19 //assign u to the best position
20 ranks[best index]← u
21 if d no longer duplicate then
22 remove d from duplicates
23 end
24 end
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Algorithm 6: Node fill-up
Input: grid g with dimension sizes (d1, . . . , dn),
stencil s = (r1, . . . , rn),
number of processes per node pnode,
starting rank rankstart
Result: Array local assignment with ranks assigned to node

local fill-up (g, s, pnode, rankstart)
1 index← 0;
2 //array containing the priority for each rank, initially zero for all i
3 priority[i]← 0
4 pq ← priority queue;
5 pq.enqueue(rankstart);
6 while Node not full do
7 if pq not empty then
8 best rank ← pq.top();
9 else

10 best rank ← next smallest unassigned rank;
11 end
12 if best rank is unassigned then
13 foreach neighbor ∈ N(best rank) do
14 if neighbor /∈ node ∧ neighbor /∈ pq then
15 //Since newly discovered rank, add one to priority
16 priority[neighbor]← 1
17 pq.enqueue(neighbor);
18 foreach neighbor of neighbor ∈ N(neighbor) do
19 if neighbor of neighbor ∈ pq then
20 priority[neighbor]← priority[neighbor] + 1
21 priority[neighbor of neighbor]←

priority[neighbor of neighbor] + 1
22 end
23 end
24 end
25 end
26 local assignment[index]← best rank;
27 index← index+ 1;
28 end
29 end
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4.2.3 Runtime Analysis

The runtime performance for this approach can be decomposed into three steps.
First, the centralized breadth-first search takes O(n+m) steps for a single run and
a graph with n vertices and m edges. Repeating this N amount of times with a
Cartesian graph that has kP edges and P vertices leads to

O(N(P + kP )) = O(kNP ) (4.6)

amount of steps.
For each node we have to extract the communication neighbors the algorithm

discovers, which is again no more than kpnode. Hence, filling the node can be done in

O(kpnoded+ pnode(log(kpnode) + k2)). (4.7)

The global check-up has to iterate over all ranks P in order to assess the unassigned
ranks and duplicates. Let nu be the number of unassigned ranks and nd the number
of duplicate ranks. Algorithm 5 will iterate over all unassigned ranks and compare
its neighborhood on the node to the neighborhood of the duplicate ranks, leading to

O(P + nundk). (4.8)

This leads to a theoretical total runtime3 of

O(kNP + kpnoded+ pnode(log(kpnode) + k2) + nundk). (4.9)

4.3 Summary
In this chapter we presented two greedy approaches, one fully centralized and one
with parallel node fill-up. The main idea was to fill the computation nodes with
groups of vertices that are maximally connected to one-another. Both approaches
do not leverage the structure of the specific problem, i.e., the Cartesian graph and
the isomorphic communication, but can be applied to any graph with arbitrary
communication patterns. Their obliviousness to the structure makes them quite
expansive in terms of theoretical runtime, since the have to look at every vertex
and edge in the communication graph C. One can easily extend both approaches to
weighted communication graphs or non-uniform node sizes, by weighting the priority
with the edge weight and by storing a list of the different node sizes and fill-up
accordingly. In the next chapter, we present a method that is no longer bounded
by the number of vertices or edges in the communication graph.

3In our implementation O(kNP + kpnoded+ pnode(kpnode + k2) + nundk)
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Hyperplane Algorithm

In this chapter, we present the hyperplane algorithm. The algorithm works recursively,
by partitioning the grid using a suitable criterion. It assumes, like the other approaches
taken in this thesis that each computational node has the same number of processes.
We will first motivate the approach taken with this algorithm, followed by a high-
level description and some pseudocode. We proceed by proving the validity of
the algorithm and derive a theoretical runtime. Finally, we conclude with a short
summary about the presented work in this chapter.

5.1 Motivation

A major drawback of the greedy approaches described in the last chapter, is the
obliviousness to the Cartesian structure. The big advantage of the Cartesian graphs
compared to unstructured graphs is the quick way of calculating the number of
processes on the grid.1 An alternative approach, that would get rid of the need to
iterate overall processes is to calculate the partitions from the macroscopic point
of view. To be more precise, the partitions are not found by looking at the ver-
tices of the communication graph C, but instead by splitting the Cartesian grid.
We can recursively partition the Cartesian graph into two parts, until each parti-
tion can be assigned to a computation node, i.e., has the size of the number of
processes per node. Partitioning the Cartesian graph arbitrarily can induce signif-
icant inter-node communication cost. Since we want to minimize the inter-node
communication, we should partition the grid in such a way that there are as few
communication edges between the partitions as possible.

1p =
∏d

i=1 di.

57
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Suppose the communication is only done along one direction given by some vector,
then splitting the Cartesian graph repeatedly along that direction would induce zero
inter-node communication cost, since there cannot be communication edges between
the partitions. If communication happens along two directions, we would like to
split the Cartesian graph along some direction parallel to the communication s.t.
the hypersurface of the cut is minimal. The algorithm should aim to find a cutting
hyperplane in each partitioning step, that is maximally parallel to the directions given
by the stencil, while minimizing the hypercut surface. By keeping the Cartesian graph
structure through the partitioning process, one can save substantial computation
time, since calculating the partition sizes can be done in O(d) instead of O(|V |),
where d is the number of dimensions and |V | the number of vertices in the Cartesian
graph C. The basic idea behind the hyperplane approach is to recursively partition
the Cartesian grid g as parallel as possible to the overall communication into two
Cartesian subgrids g′ and g′′ where both have the size of a multiple of the number of
processes per node pnode. The subgrids g′ and g′′ are again partitioned until there
are N subgrids of size pnode. This approach enables us to calculate a permutation
for the processes without the need for communication between the processes.

5.2 Algorithm
We will first give an verbal description of the algorithm, along with some expla-
nations on the choice of dimension splitting criterion. After which, we give a
high-level description in form of pseudocode.

5.2.1 Formal Description

The concrete algorithm will work recursively. The final partition IDs correspond
to the computation node IDs. At the beginning, there is only the total Cartesian
graph, and we assign to it the partition ID 0. Each process knows the ID of the
computation node it is assigned to. Using this information and the rank of the
process on its assigned node, we can calculate its new coordinates in the grid after
termination. To get rid of the need for communication, each process keeps track
of the size and the position of the subgrid on the original grid. At each level of
the recursion, the algorithm will perform the following steps.

1. Find a permutation order of the dimension sizes s.t. the dimensions are ordered
from the most to the least suitable, by some criterion. The cos(α) as defined
in Equation (5.1) between a relative coordinate vector ri ∈ N = {r1, . . . , rk},
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(a) Input (b) Step 1
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(c) Step 2
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(d) Step 3
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Figure 5.1: Motivating example for the hyperplane approach. (a): 5× 4 input mesh
with a five-point stencil, output 5 partitions of size 4. Because of the structure of the
stencil, the Tuple (5.3) has the same value (2) for all the dimensions and the grid is
only partitioned according to the dimension size. (b) and (c): Positioning of the first
hyperplane s.t. both sides are a multiple of 4. (d): Recurse on both subgrids. On the
left subgrid, we can immediately find a hyperplane s.t. both induced subgrids are of
size 4 and we are done. On the right-hand side, the first suitable dimension cannot
be split s.t. we can find subgrids with the size of multiple of 4, hence we try the next
direction. (e): The left subgrid on the hyperplane is of size 4, and we are done. (f):
Recurse on right subgrid and find the final hyperplane s.t. that all partitions are of
size 4.
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Dim 0Dim 1

r1

r2

Figure 5.2: Motivating example to choose a dimension for the hyperplane. A 2D
grid with a stencil (blue). Intuitively we want to split along dimension 0, since a
split along dimension 1 would yield more cuts due to the component r1 in dimension
1. We can calculate cos(αri,ej) between the relative coordinate vectors and the grid
dimensions. One can see that the angles between the stencil directions and dimension
1 (green) are smaller than the angles between the stencil directions and dimension 0.
Thus, we should first split along dimension 0.

given by a stencil and a grid directions ej ∈ E = {e1, . . . , ed} is proportional
to the angle αri,ej between ri and ej and thus a good quantifier of parallelism.
If cos(α) is zero for any ri, ej pair, it means that ri and ej are parallel, if the
absolute value is Equation (5.1) is one, then ri and ej are orthogonal to another.

cos(αriej) =
riej

||ri|| ||ej||
∈ [−1, 1] (5.1)

To define a strictly monotonic indicator function, we can calculate the squared
cosine between each neighbor and a dimension j, 1 ≤ j ≤ d.

k∑
i=1

cos2(αri,ej) ∈ [0, 1] (5.2)

Doing so for all dimensions gives us

(
k∑
i=1

cos2(αri,e1), . . . ,
k∑
i=1

cos2(αri,ed)

)
. (5.3)
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Dim 2
Dim 1

(a) 4× 4 grid with an asymmetrical stencil.

Dim 2

Dim 1

(b) Partitioning obtained by the hyperplane

Figure 5.3: Consider a 4× 4 grid that should be mapped to four computation nodes,
each having four cores and a stencil similar to the component stencil defined in
Section 1.2.4 of Chapter 1, but with additional communication in a diagonal, see
Figure 5.4. The Tuple (5.3) for that stencil has the following values (2.5, 0.5). The
input Cartesian graph is depicted in (a) and the output of the hyperplane partitioning
in (b). Since the Tuple (5.3) has the minimal value in the second dimension, the
hyperplane algorithm will split the grid along that dimension, i.e., find a hyperplane
that is maximally parallel to the stencil communication.

The dimension with the minimum value in Equation (5.2), is the dimension that
is orthogonal to the hyperplane, which is as parallel as possible to all relative
coordinate vectors.2 Note that by taking the square of the cosine, relative
coordinate vectors ri and grid direction vectors ej that are strongly parallel
cos(αri,ej) ≈ 1 will contribute more to the fit of a hyperplane than vectors that
are weakly parallel. We can sort the Tuple 5.3 in ascending order to traverse
the dimensions from most suitable to least suitable for a split. Note that each
edi

has only one non-zero entry. This observation will improve the runtime for
calculating Equation (5.2) for all dimensions.

2. Try to partition the grid into two parts, each being a positive multiple of
the number of processes per node pnode. This is done by first positioning the

2This criterion only evaluates the dimensions according to their parallelism to the stencil
directions. It is oblivious to the depth of the stencil communication. We could incorporate the
depth of communication pattern, by not normalizing the inner product between ri and ej. This
would change Equation (5.2) to

∑k
i=1 ||ri|| cos2(αri,ej

) for dimension j
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hyperplane in the middle of the candidate dimension d′, i.e., at d′/2. If the
two partitions do not form a multiple of the number of processes per node
pnode, then the hyperplane is shifted by one in the decreasing direction of the
dimension. If no suitable split was found, i.e., we are at the last possible
position for the hyperplane and cannot decrease the position any further, the
next best dimension in the permutation order is tried. This step is repeated
until a suitable split of a dimension d′ is found. We prove in Section 5.2.3 that
we are always able to find a split.

3. If the hyperplane split was found, we can calculate the number of partitions left
on either side. This information is encoded in the IDs of the partitions. The
left-hand side has partition ID idlhs, which corresponds to the partition ID of
the grid before the split, while the right-hand side receives partition ID idlhs+
number of partitions on the left-hand side. Each process can then deduce on
what side of the hyperplane it has to position itself, in order to be assigned
to the correct computation node. The subgrid size and position on the grid is
adjusted. If the number of remaining partitions on either side is greater than
one that side will recurse and go back to step one.

4. If a partition has size of pnode then it enters the base-case. Each process can
calculate individually its new coordinates, given the start and end points of the
position of the subgrid on the overall grid. Suppose the partition of the calling
process has the partition identity id and is on subgrid gsub with dimension sizes
(p1, . . . pd) then we can calculate the new coordinates in the following manner.

• First calculate the node rank Rnode of the calling process with rank R
on its computation node. Assuming that the processes were assigned
consecutively to the computation nodes and that each computation node
has the same amount of processes pnode assigned to it.

Rnode = R− id ∗ pnode (5.4)

Figure 5.4: Example of an asymmetrical stencil.
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• Then we can traverse the dimensions in order and assign to the coordinate
vector holding the coordinates of the new rank the starting point of the
position of the subgrid, i.e., we assign all processes to one vertex in the
starting corner of the subgrid.

• In the next iteration over the dimensions, we assign to the coordinate in
the current dimension i the remainder of the division between the Rnode

and the size of the dimension size pi.

5.2.2 Pseudocode

In this part, we provide the reader with a high-level notation of the hyper-
plane algorithm in form of pseudocode. The partitioning of the graph and
the recursion steps are described in Algorithm 8, whereas the base-case new
coordinate calculation is found in Algorithm 7.

Algorithm 7: Base-case
Input: subgrid g with dimensions sizes (p1, . . . , pd),
the subgrid’s position (gsub,1, . . . gsub,d) in the original grid,
the new rank coordinates,
number of processes per node pnode,
Partition identity ID,
rank R
Result: Coordinate vector of new rank

base-case(g, position, coordinates, pnode, ID)
1 //calculate the node rank
2 Rnode ← R− ID · pnode;
3 //Assign all processes to the starting corner of the subgrid foreach d′ ← 1 to

d do
4 coordinates[d′]← position[d′];
5 end
6 i← 0;
7 foreach p′ in dimension sizes do
8 coordinates[i]← coordinates[i] +Rnode mod p′;
9 i← i+ 1;

10 end
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Algorithm 8: Hyperplane Algorithm
Input: grid g with dimensions sizes (p1, . . . , pd),
the grid’s position in the original grid,
vector angles containing the sum over the neighbors of the squared cos(α) per
dimension,
the new rank coordinates,
number of processes per node pnode,
Partition identity ID = 0
Result: Coordinate vector of new rank

hpp(g, position, angles, coordinates, pnode, ID)
1 if |g| = pnode then
2 //calculate new coordinates of calling rank;
3 base-case(g, position, coordinates, pnode, ID)
4 return;
5 end
6 //sort the dimensions based on the criterion defined in Equation (5.2)
7 //from best dimension to worst dimension
8 dimension permutation ← sort(dimensions)
9 foreach d′ in dimension permutation do

10 h← |g|
d′

;

11 a←
⌊
d′

2

⌋
;

12 b←
⌈
d′

2

⌉
;

13 while a · h mod p 6= 0 ∧ a > 1 do
14 a← a− 1;
15 b← b+ 1;
16 end
17 if a · h mod pnode = 0 then
18 //remaining partitions in left-hand side
19 r ← a·h

pnode

20 if Node ID < ID + r then
21 adapt positioning of subgrid;
22 d′ ← a;
23 //recurse
24 hpp(g, position, angles, coordinates, pnode, ID);
25 else
26 adapt positioning of subgrid;
27 d′ ← b;
28 //recurse
29 hpp(g, position, angles, coordinates, pnode, ID + r);
30 end
31 break;
32 end
33 end
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0 1 2 34 5 6 78 9 10 11

0 1 2
3 4 5
6 7 8
9 10 11

(a) Default

0 3 6 91 4 7 102 5 8 11

0 1 2
3 4 5
6 7 8
9 10 11

(b) Gropp’s reordering

0 3 6 91 2 4 57 8 10 11

0 1 2
3 4 5
6 7 8
9 10 11

(c) Hyperplane reordering

Figure 5.5: Different reorderings for a 4× 3 Cartesian graph with a five-point stencil
to be mapped onto 3 computation nodes, each with 4 cores. On the left are the ranks
of the processes on the cores (grey rectangles). The red lines on the right symbolize
the partitions. (a): Default order of processes on the computation node, resulting in
16 total and one computation node with 8 inter-node communication edges, counting
directed edges. (b): For illustration purposes we include Gropp’s rearrangement
here, having also 16 total and one node with 8 inter-node communication edges. (c):
The hyperplane reordering would partition the Cartesian graph s.t. each node has 4
inter-node communication edges, resulting in a total of 12.
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5.2.3 Validity and Runtime

The main part of the algorithm is to find a hyperplane that can split the grid
g into two subgrids g′ and g′′. We will now show that it is always possible to
find a hyperplane for a suitable mesh.

Theorem 5.2.1. Let C ∈ N and C ≥ 2. Let pnode := number of processes per node,
with pnode ∈ N+. Let g be a d-dimensional grid, with dimensions sizes D = (d1, . . . , dn)
and ∀di ∈ D : di ∈ N+ and |g| :=

∏d
i=1 di be the number of vertices of grid g. If

|g| = Cpnode, then it is always possible to find a dimension d′ that partitions g into
two subgrids g1 and g2, s.t. |g1| = c′pnode and |g2| = c′′pnode with c′, c′′ ∈ N+.

Proof. The number of vertices is given by,

d∏
i=1

di = Cpnode. (5.5)

Let F (x) = (fx1, . . . , fxl) be all the l prime factors of x ∈ N, i.e.,

x =
l∏

j=1

fxj. (5.6)

Writing every di in 5.5 as the product of its prime factors, we obtain

d∏
i=1

li∏
j=1

fdij = Cpnode. (5.7)

Note that the left-hand side of Equation (5.7) is also the product of the prime
factors of C and pnode. That is, we can write the prime factorization of C and pnode
as the product of prime factors corresponding to the dimension sizes.

C = F (C) =
∏

for some fdij∈F (
∏d

i=1 di)

fdij (5.8)

and
pnode = F (pnode) =

∏
for some fdij∈F (

∏d
i=1 di)

fdij. (5.9)

Since F (
∏d

i=1 di) = F (C)F (pnode), no fdij is used in both Equation (5.8) and
Equation (5.9). Then there exists a fd′j′′ in F (C) for which holds that fd′j′′ ≥ 2,
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which corresponds to a dimension d′. Write fd′j′′ = a + b with a, b ∈ N+, then we
obtain for d′

d′ = (a+ b)
∏
j 6=j′′

fd′j (5.10)

enabling us to write Equation (5.5) as

(a+ b)
∏
j 6=j′′

fd′j
∏
di 6=d′

di = Cpnode

pnode(a+ b)
∏

dC∈F (C)\fd′j′′

fC = Cpnode
(5.11)

where we can see that we can always split a dimension into two parts, resulting in
two subgrids g1 and g2 with

|g1| = pnodea
∏

fC∈F (C)\fd′j′′

fC (5.12)

and
|g2| = pnodeb

∏
fC∈F (C)\fd′j′′

fC . (5.13)

Secondly, we want to show that if there is dimension that is normal to every
stencil communication direction then splitting this dimension will not induce any
inter-node communication cost. For the proof, we introduce the following lemma
stating that if all relative communication neighbor vectors ri ∈ N are normal to
a dimension dj then their j-th component is zero.

Lemma 5.2.2. Let r and ej be n-dimensional vectors and ej have unit length with
only one non-zero entry at position j. If r ⊥ ej, then component j of r is zero.

Proof. If r ⊥ ej, then
cos(α) =

rej
||r|| ||ej||

= 0. (5.14)

Since ej has unit length and only one non-zero element, the equation above is
equivalent to

cos(α) =
rj
||ri||

= 0 (5.15)

where rj is the j-th component of vector r. One can easily see that for Equation (5.15)
to be fulfilled, rj must equal to zero.
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Theorem 5.2.3. Let g be a d-dimensional grid with dimension sizes D = (d1, . . . , dd).
Let ei be the unit vector indicating the direction of dimension di, with only one non-
zero element at position i. Let N = {r1, . . . , rk} be the set of relative communication
neighbor vectors. If there exists an ej s.t. ∀ri ∈ N : ri ⊥ edj

with 1 ≤ j ≤ d then
a split of dimension dj into a, b ∈ N+ with dj = a+ b cannot induce any inter-node
communication cost.

Proof. Inter-node communication cost can only arise if there is a relative communica-
tion neighbor vector going from a subgrid to another.

A split of dj into a and b will induce two subgrids g′ with the same dimension
sizes as the original grid g except for the j-th component D = (. . . , dj = a, . . . ) and
g′′ with D = (. . . , dj = b, . . . ). Let v′ be a vertex in subgrid g′ with coordinates
v′ = (v′1, . . . , v

′
d) and v′′ be a vertex in subgrid g′′ with coordinates v′′ = (v′′1 , . . . , v

′′
d).

Note that ∀v′ : v′j ≤ a and ∀v′′ : v′′j > a. Inter-node communication is induced if
there are two vertices v′ and v′′ s.t. c(v′ − v′′) ∈ N with c ∈ {−1, 1}. That is,
there exists a pair v′ in g′ and v′′ in g′′ whose relative difference corresponds to a
relative communication neighbor vector. The j-th component of c(v′− v′′) 6= 0, since
∀(v′, v′′) : v′j 6= v′′j . Hence, the vector c(v′ − v′′) /∈ N since ∀r ∈ N : rj = 0.

We will now prove that this algorithm will yield unique rank coordi-
nates to every rank in the original grid g.

Theorem 5.2.4. Let g be a d-dimensional grid with dimension sizes (d1, . . . , dd).
Let g be partitioned into N subgrids, as described in Algorithm 8. Let the subgrid
gi, with 0 ≤ i ≤ N − 1 have dimension sizes (di,1, . . . , di,d) and starting points for
each dimension (gi,1, . . . , gi,d) in the original grid g. For each subgrids gi holds that∏d

j=1 di,j = pnode. Then when Algorithm 8 completes, each process with rank R in g
will have a unique new coordinate vector (R1, . . . , Rd), describing the position of the
new rank of R.

Proof. First, observe that the subgrids gi will always be disjoint, due to the way the
split is defined. A split of a grid g around a dimension k, by splitting the dimension
size pk = a+ b will induce two subgrids g′ and g′′. All vertices v′ in g′ have a value
smaller or equal than a in the k-th component v′k ≤ a, whereas all vertices v′′ in g′′
have a value strictly bigger than a in the k-th component v′′k > a. This argument
holds for each split resulting in

N−1⋃
i=0

gi = g and
N−1⋂
i=0

gi = ∅. (5.16)
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When entering the base case, all the processes in a subgrid gi will be assigned
to the same vertex at position (gi,1, . . . , gi,d) as described in Algorithm 7. That
means there is one vertex in the subgrid with a load of pnode, while there pnode − 1
vertices with load 0. In the first step of Algorithm 7 in dimension 1, all processes
will update their coordinate to the remainder of the division between their rank on
the node Rnode and di,1 (Line 8 in Algorithm 7). Since all processes have a unique
node rank between 0 ≤ Rnode ≤ pnode − 1 and pnode = di,1

∏d
j=2 di,j, each vertex v

with coordinates (gi,1 ≤ v1 ≤ gi,1 + di,1, . . . , gi,d) has a load of pnode

di,1
, whereas there

are pnode − di,1 vertices with load 0. Note that taking the remainder of the division
ensures that the processes will be assigned to vertices within the subgrid. In general
after m steps, there will be

∏m
j=1 di,j vertices with load pnode∏m

j=1 dij
and pnode −

∏m
j=1 di,j

with load 0. After d steps all vertices in the subgrid will have a load of 1, i.e., each
process will be assigned to a unique position in the subgrid and since all subgrids are
disjoint and all processes in the overall grid g will be assigned to a unique rank.

One can easily see that Algorithm 8 always terminates.

Theorem 5.2.5. Let g be a d-dimensional grid with dimension sizes (d1, . . . , dd).
Assume that there are N computation nodes and let pnode be the number of processes
per node. Let

∏d
i=1 di = Npnode then Algorithm 8 will produce N partitions with size

pnode and always terminate.

Proof. In each call, Algorithm 8 will either enter the base-case if the size of the
input grid is pnode and thus terminate or it will partition g into two subgrids g′ and
g′′ with new dimension sizes (d′1, . . . , d

′
d) and (d′′1, . . . , d

′′
d), where at least one di is

smaller than in the original grid. For both subgrids holds that
∏d

i=1 d
′
i = c′pnode and∏d

i=1 d
′′
i = c′′pnode for some c′, c′′ ∈ N+. The subgrids always fulfill the termination

criteria, namely that their size is a multiple of pnode. Since the input grid size can
only decrease, the algorithm terminates after a finite amount of steps.

The runtime analysis is a bit more complicated, since it is a recursive prob-
lem and the input size for each level can vary.

At first, we can exploit the fact that the subgrid dimension directions on each
recursive level are parallel to those of the original grid. Hence, we can compute
the angle between each ri ∈ N and ej ∈ E in a preprocessing step in O(kd) steps,
where k = |N | and d is the number of dimensions.

Theorem 5.2.6. Given a set of unit vectors E = (e1, . . . , en) with only one non-zero
element and a set of relative neighbor vectors N = (r1, . . . , rk), then it is possible to
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calculate the sum of all squared cos(α) as defined in 5.2, where α is the angle between
some ri ∈ N and some ej ∈ E in O(kd) steps.

Proof. We take each of the k relative vector ri ∈ N , calculate its length ||ri|| in
O(d) steps. We can now use the observation made above that all ej ∈ E have exactly
one non-zero element in the j-th component and unit length. Denote ri,j the j-th
component of ri then 5.1 becomes

cos(α) =
riej

||ri||||ej||
=

ri,j
||ri||

. (5.17)

Now each computation of α can be done in O(1) steps, as does the computation
of the squared value and the addition to already calculated values. As this is done
over all dimensions, in total this gives us O(dk) steps.

Let us now look at the amount of work done in each recursive call, excluding
the amount of work done in the consecutive levels.

The first step is to find a permutation of the order of dimension sizes. Since the
calculation of the squared cos(α) values was done as a preprocessing step, we only
need to sort the dimensions sizes accordingly. Sorting can be done in O(d log(d)) steps,
where d is the number of dimensions. Since we only change the one dimension size in
each recursive call, we can presort the dimension sizes according to Equation (5.2) and
then only update the position of the changed the dimension size d′. This approach
allows us to sort the dimension in the recursive steps in O(d) steps.

In the second step, we try to find a suitable position for the hyperplane.

Theorem 5.2.7. Let g be a d-dimensional grid with dimensions sizes D = (d1, . . . , dd)
with ∀di ∈ D : di ∈ N+. Let |g| =

∏d
i=1 di = Cp for some C, p ∈ N+. Then it is

possible to find a dimension d′ s.t. a split of d′ fulfills the criteria defined in Theorem
5.2.1 in O(

∑d
i=1 di) steps.

Proof. Denote d′ as the candidate dimension. Then we split d′ into two parts, writing
d′ = a+ b with a =

⌊
d′

2

⌋
and b =

⌈
d′

2

⌉
. For symmetry reasons, we only need to look at

half of the possible positions for the hyperplane. Note that we move the position of
the split in d′ at most d′

2
times. In the worst case, we have to look at all dimensions.

Resulting in
∑d

i=1
di
2
steps.

In the best case scenario the first dimension d′ in the permutation order of the
dimension sizes will find a suitable split at d′

2
. This would give us O(d log(d)) amount

of work in one recursive call, since we only need to sort the dimension sizes and all
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other operations are of order O(1). In the worst case, we would need to iterate over
all possible dimensions, resulting in a runtime of O(d log(d) +

∑d
i=1 di).

As mentioned before, the amount of partitions left on either side can be calculated
in O(1) steps. After finding the correct split, the subgrid sizes and the number
of processes per subgrid can be calculated in O(1) time, since we can use (a +
b)
∏

d∈D\d′ d. For the position of the subgrids in the grid we need d points. We
just have to adapt one point in dimension d′ for the left-hand and the right-hand
side of grid respectively, which can be done in O(1) steps.

When the algorithm enters the base case, we can calculate the coordinates of
the calling rank in the overall grid in O(d) steps.

Theorem 5.2.8. The runtime of Algorithm 7 is O(d).

Proof. Calculating the node rank Rnode can be done in constant time. The two loops
are over the dimensions and inside of each loop a constant number of steps is done.
Resulting in O(d) steps in total.

If we take a look at the overall runtime, we see that the inner work on each level
of the recursion tree affects the number of recursive calls. If we find a hyperplane
that splits each dimension d′ in middle, i.e., at d′

2
then there are (log2(N)− 1) calls,

where N is the number of computation nodes. In the worst case on the other hand,
at each level of the recursion tree we can only partition the dimension size d′ into
a = 1 and b = d′ − 1 then we would need a total of O(N) calls.

Before giving an estimation for the total amount of recursive calls, observe that the
worst case of only being able to find a partition of size pnode can arise in just two cases.

Theorem 5.2.9. Let g be a d-dimensional grid with dimension sizes D = (d1, . . . , dd).
Let |g| =

∏d
i=1 di be the size of a grid. Let

∏d
i=1 di = Cpnode, where pnode is the amount

of processes per computation node and C ∈ N and C ≥ 2. Then Algorithm 8 will find
a split of g into two subgrids g′ and g′′, where either |g′| = pnode and/or |g′′| = pnode
if and only if C is either 2 or 3.

Proof. Consider the product of the prime factors of the candidate dimension size
Equation (5.7). For the purpose of this proof it suffices to look at the prime factors
of C.

lC∏
j=1

fCj = C. (5.18)
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Assume that lC > 1, that is C has more than one prime factor. Then a split of
any prime factor fCj′ = a+ b would result into two partitions both greater than pnode,
since

pnode(a+ b)
∏

fCj 6=fCj′

fCj = Cpnode =

a ∏
fCj 6=fCj′

fCj + b
∏

fCj 6=fCj′

fCj

 pnode

apnode
∏

fCj 6=fCj′

fCj︸ ︷︷ ︸
|g′| ≥ pnode

+ bpnode
∏

[fCj 6=fCj′

fCj

︸ ︷︷ ︸
|g′′| ≥ pnode

since
∏

fCj 6=fCj′

fCj > 1.

(5.19)

Thus, fCj = C ≥ 2. Since the prime factorization is equal to that of Cpnode, C
must also be the prime factor of some dimension size d′. Lets us write the dimension
size d′ as the product of its prime factors.

C
∏

fd′∈F (d′)\C

fd′ = d′ (5.20)

In line 11, Algorithm 8 will divide d′ into a =
⌊
d′

2

⌋
and b =

⌈
d′

2

⌉
. Since

pnode =

∏d
i=1 di
C

(5.21)

the only factor that is allowed to be modified in 5.20 is C, since any other modification
would change pnode. If d′ is even then

a =

C
2

∏
fd′∈F (d′)\{f ′}

fd′

 =
C

2

∏
fd′∈F (d′)\{f ′}

fd′

b =

C2
∏

fd′∈F (d′)\{f ′}

fd′

 =
C

2

∏
fd′∈F (d′)\{f ′}

fd′ .

(5.22)

and clearly for a partition to have size pnode, C = 2.
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If d′ is odd, then

a =

C
2

∏
fd′∈F (d′)\{f ′}

fd′

 =
(C
∏

fd′∈F (d′)\{f ′} fd′)− 1

2

b =

C2
∏

fd′∈F (d′)\{f ′}

fd′

 =
(C
∏

fd′∈F (d′)\{f ′} fd′) + 1

2
.

(5.23)

There are two values for C to obtain a partition of size pnode. Either C = 2 =⇒⌊
C
2

= 1
⌋
or C = 3 =⇒

⌊
C
2

= 1
⌋
.

This gives us hope that in the worst case the depth of the recursion tree is still
logarithmic in the number of computation nodes. In fact, each hyperplane will
produce two subgrids where the ratio of the sizes is bounded.

Theorem 5.2.10. Let g be a d-dimensional grid with dimension sizes
D = (d1, . . . , dd). Let

∏d
i=1 di = Cpnode, where C, pnode ∈ N+ and C ≥ 2.

Then Algorithm 8 will always partition g into two subgrids g′ and g′′ s.t. the
1
2
≤ |g′|
|g′′| ≤ 1.

Proof. We will again use the fact that the prime factorization of
∏d

i=1 di and Cpnode
are equal. Therefore, we can split the li prime factors of each dimension size di ∈ D
into m prime factors di contributing to C and li −m prime factors contributing to
pnode.

di = di,1, . . . , di,m︸ ︷︷ ︸
Contributing to C

di,m+1, . . . , di,li︸ ︷︷ ︸
Contributing to dnode

m ≤ li. (5.24)

Let the prime factors di,m contributing to C be ordered, i.e., di,1 ≤ · · · ≤ di,m. Let
the candidate dimension size d′ have prime factors contributing to C, i.e., m > 0.
Note that if m = 0, Algorithm 8 will iterate over the candidate dimension size d′
without finding a suitable split. Then the algorithm will surely find a suitable split at
d′1 with

⌊
d′1
2

⌋
and

⌈
d′1
2

⌉
, since the prime factors contributing to pnode remain unchanged.

If d′1 = 2, the resulting split will yield two partitions of exactly the same size.
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|g′| = d′1
2

m∏
j=2

d′j
∏
di 6=d′

di

|g′′| = d′1
2

m∏
j=2

d′j
∏
di 6=d′

di

=⇒ |g′|
|g′′|

= 1.

(5.25)

If d′1 ≥ 3, then a split around it will yield two partitions with a bigger difference
than a split of any other prime factor d′k contributing to C with 2 ≤ k ≤ m. Note
that in this case

⌊
d′1
2

⌋
=

d′1−1
2

and
⌈
d′1
2

⌉
=

d′1+1

2
.

d′1−1
2

∏m
j=2 d

′
j

∏
di 6=d′ di

d′1+1

2

∏m
j=2 d

′
j

∏
di 6=d′ di

≤
d′k−1
2

∏m
j 6=k d

′
j

∏
di 6=d′ di

d′k+1

2

∏m
j 6=k d

′
j

∏
di 6=d′ di

=

d′1 − 1

d′1 + 1
≤ d′k − 1

d′k + 1
.

(5.26)

This always holds, since this is a strictly monotonic increasing function that
converges to 1 for growing d′k values. To see this suppose x, y ≥ 0

x− 1

x+ 1
≤ y − 1

y + 1

(x− 1)(y + 1) ≤ (y − 1)(x+ 1)

xy + x− y − 1 ≤ xy + y − x− 1

x ≤ y.

(5.27)

Again this will satisfy the splitting criteria, since prime factors contributing to
pnode remain unchanged. Note that if the Algorithm 8 first positions the hyperplane
at
⌊
d′

2

⌋
it will eventually find a suitable split, latest at

⌊
d′1
2

⌋∏m
j=2 d

′
j.
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⌊
d′1
2

⌋ m∏
j=1

d′j ≤
⌊
d′

2

⌋
d′1 − 1

2

m∏
j=1

d′j ≤
d′ − 1

2

d′ −
m∏
j=2

d′j ≤ d′ − 1

−
m∏
j=2

d′j ≤ −1

(5.28)

We can bound the ratio of the two grid sizes |g′| and |g′′| from below, since d′1 ≥ 3.

|g′|
|g′′|

=

d′1−1
2

∏m
j=2 d

′
j

∏
di 6=d′ di

d′1+1

2

∏m
j=2 d

′
j

∏
di 6=d′ di

≥ d′1 − 1

d′1 + 1
≥ 3− 1

3 + 1
≥ 1

2
. (5.29)

Theorem 5.2.10 shows that the input grid always decreases at least by a factor
of 2

3
, resulting in a recursion tree depth of maximal log 3

2
(N) and that a candidate

dimension d′ is only iterated through, if all the prime factors of d′ contribute to pnode.
At each level in the recursion tree, a worst-case of O(d+

∑d
i=1 di) is performed

resulting in a total, theoretical runtime of

O(dk + d log(d) + log(N)(d+
d∑
i=1

di)). (5.30)

5.3 Summary

In this chapter, we introduced the hyperplane algorithm, which recursively splits
the input Cartesian graph C into two subgraphs, while preserving the Cartesian
structure throughout the recursion. We were able to show that finding these splits
is always possible if the required assumptions are fulfilled, i.e., each computation
node has the same number of processes per node pnode. Note that the algorithm
could be extended to handle cases with inhomogeneous node sizes. We will give
a first, intuitive idea in Chapter 7. Further, we could provide an upper-bound for
the theoretical runtime, which is no longer dependent on the number of vertices
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and edges of the original Cartesian graph C. Another advantage of this algorithm
is that the processes can calculate their new coordinates independently of another,
without the need for communication. This results in very good scaling behavior and
computational load balance compared to the two greedy approaches, that needed
several broadcasting operations and the computation load was not well balanced, if
at all. In Chapter 6 we will investigate the experimental runtime of the algorithm.
More specifically, we look at the depth of the recursion tree and at the number of
times the hyperplane must be shifted in order to find a suitable split.



Chapter 6

Experimental Evaluation

This chapter deals with the experimental evaluation of the presented algorithms.
We will commence by defining the experimental setup in which we give informa-
tion about the used hard- and software and the generated instances. We proceed
with the experimental evaluation of the theoretical runtime of the hyperplane algo-
rithm, in which we look at the recursion tree depth and the number of hyperplane
shifts. After which, we continue by directly comparing the number of inter-node
communication for different reordering schemes, including VieM. We then proceed
by examining the effect of reduction in inter-node communication in terms of com-
munication time needed for the MPI_Neighbor_alltoall routine. We conclude
by comparing the instantation time needed for the Cartesian communicators with
and without the presented reordering schemes.

6.1 Experimental Setup

The following section aims to clarify the setup of the experiments in terms of
the used hard- and software, the grid setups and the stencils that were used
to induce the Cartesian graphs. We will give information about the framework
of the code and how one could use it.

6.1.1 Hardware and Software

All the experiments have been done on a system at the TU Wien called Hydra, an
Intel Skylake-OmniPath with 36 computation nodes, each with two Intel Xeon Gold
6130 CPUs with a clock speed of 2.10 GHz, i.e., each node has 32 cores. Each node
has 94 GB of main memory. We used Open Mpi 4.0.1. We implemented Gropp’s

77
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Nodecart routine as described in Algorithm 2 in Chapter 3, the two greedy approaches
in Chapter 4 and the hyperplane algorithm described in Chapter 5. The code is
written in C++ and compiled using the gcc 8.3.0 with full optimization flags (-O3).

Implementation Details

We implemented wrappers around the Cartesian instantiation routines. To be more
precise, Nodecart and the algorithms developed in this thesis first calculate the
new ranks, create a new communicator with the new ranks, which is then passed
to the MPI_Cart_create routine to instantiate the new Cartesian communicator.
The algorithms were designed to get a Cartesian communicator as an input, from
which they are able to obtain all necessary information like the number of dimensions,
the dimension sizes, the periodicity and the calling ranks coordinates.1 The stencils
can be passed as an integer list of size k · d, where k is the number of neighbors
and d the number of dimensions. The list holds the offset in each dimension for
every communication neighbor, i.e., the relative distance vector describing the posi-
tion of the first communication neighbor is given by the first d entries, the second
communication neighbor by the second d entries and so on.

Listing 6.1: Function signature for the wrappers of the two greedy approaches and
the hyperplane algorithm.
void MPIX_Cart_greedy_central(MPI_Comm cart_comm ,

const int stencil[],
const int n_neighbors ,
MPI_Comm * greedy_central_comm );

void MPIX_Cart_greedy_dist(MPI_Comm cart_comm ,
const int stencil[],
const int n_neighbors ,
MPI_Comm * greedy_dist_comm );

void MPIX_Cart_hyperplane(MPI_Comm cart_comm ,
const int stencil[],
const int n_neighbors ,
MPI_Comm * hyperplane_comm );

The algorithms presented in this thesis expect the ranks to be assigned consecu-
tively on the computation nodes and in order to ensure this, we included a routine that

1This information is cached in Cartesian communicator.
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re-sorts the ranks accordingly. This is done by creating a communicator consisting
of one process per computation node and communicators consisting of all processes
on a node, similarly as it is done in the Nodecart approach described in Chapter 3.
Given the two communicators and the fact that each node has the same number of
processes, each process can calculate its new rank, ensuring that the processes lie
consecutively on the nodes. If not mentioned otherwise, all the experiments have
been done with an initial default rank assignment of MPI.

6.1.2 Grids

We used different of number of dimensions, nodes and processes per node to generate
a variety of grid configurations. All experiments were done with at least 6 and up to
36 nodes with a step size of 3, for each node configuration we varied the number of
processes on the node from 8 to 32 with a step size of 4 and choose the number of
dimensions to be the number of prime factors of the product between the number
of nodes and the number of processes on a node. For example, if we use 8 nodes
and each node has 12 processes then the total number of processes is 96 which has 6
prime factors (2, 2, 2, 2, 2, 3), so we let the number of dimensions of the grid range
from 2 to 6. The dimension sizes were created with the MPI_Dims_create routine.
We used solely non-periodic grids throughout the experiments.

6.1.3 Stencils

We give a short overview of the stencils used for the experiments and why we choose
them. The stencil definitions can be found in Chapter 1 in Section 1.2.4.

We experimented with a variety of stencils, each giving some rank reordering
strategies different advantages. We used the general five- and nine-point stencil, since
they are used in a lot of benchmarks, including in Gropp’s [14]. We designed the
component stencil, which generates dd components, where dd is the grid size in the
last dimension. The hope is that this stencil favours the hyperplane algorithm, since
in each recursion level, it will try to find a split along the last dimension, as there
is no communication alongside of it. Another stencil we used for benchmarking is
the diagonal stencil. This stencil has no communication that is parallel to the grid
basis. The hyperplane algorithm cannot partition the Cartesian graph parallel to any
communication direction. This communication pattern is better suited for the greedy
approaches. We included the Crank-Nicolson stencil in our benchmarks, which is an
often used scheme in finite difference for solving partial differential equations, see Crank
and Nicolson [9]. Finally, we also experimented with two stencils that have multiple
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hops to test the effect of hops on the algorithms. In our case, we performed tests with
3 hops on the general five-point stencil in the first and the last dimension, i.e., in either
the first or the last dimension a process has 3 communication neighbors per direction
instead of 1, see Figure 1.3b. This strongly favors partitioning along the dimension
with the hops and the hope is that the hyperplane algorithms finds goods partitions.

6.2 Hyperplane Parameters
In order to visualize the dependency on the parameters for the theoretical
runtime of the hyperplane algorithm defined in Equation (5.30) and see the
practical runtime behaviour, we can count the amount of recursive calls and
the amount of shifts of the hyperplane for each calling process and different
stencil forms. We first look at the depth of the recursion tree and continue
to investigate the maximal number of shifts in practice.

6.2.1 Depth of Recursion Tree

We have shown in Chapter 5, Theorem 5.2.10 that the worst case depth of the
recursion tree is log 3

2
(N), where N is the number of computation nodes, while the

best case recursion tree depth is log2(N), i.e., if the hyperplane algorithms always
finds subgrids of the same size. We are interested to see in how close we are to
the best case scenario in practice. We extracted the maximal number of recursive
calls over all processes for all generated instances.

In Figure 6.1, we plot the maximal, minimal and average maximal depth over
all instances of the recursion tree per number of nodes N for the general five- and
nine-point stencil, in Figure 6.2, for the component and the Crank-Nicolson stencil,
in Figure 6.3, for the general five-point stencil with 3 hops in the first and last
dimension and in Figure 6.4 for the diagonal stencil.

As one can see, on average we are very close to the rounded up best-case scenario.
This indicates that the size ratio of the hyperplane induced subgrids is well balanced.
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(a) General five-point stencil.
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(b) General nine-point stencil.

Figure 6.1: Maximal number of recursive calls for different instances per node for the
general five-point stencil (a) and the general nine-point stencil (b).
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(a) Component stencil.
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(b) Crank-Nicolson stencil.

Figure 6.2: Maximal number of recursive calls for different instances per node for the
component stencil (a) and the Crank-Nicolson stencil (b).
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(a) General five-point stencil with 3 hops in
the first dimension.
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(b) General five-point stencil with 3 hops
in the last dimension.

Figure 6.3: Maximal number of recursive calls for different instances per node for
the general five-point stencil with 3 hops in the first dimension (a) and in the last
dimension (b).
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Figure 6.4: Maximal number of recursive calls for different instances per node for the
diagonal stencil
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6.2.2 Shifts of the Hyperplane

In order to visualize how many dimension shifts are made over the recursion, we
summed up the total amount of shifts done for each process, extracted the max-
imum number of shifts over all processes shiftstotal and divided it by the theoret-
ical worst case number of possible shifts, that is,

Worst case ratio =
shiftsmax

log 3
2
(N)

∑d
i=1

di
2

. (6.1)

Note that by shift we mean actual decrements of the split position as in Line 14
in Algorithm 8, not the initial positioning. The cost of shifting the hyperplane is
given by the sum in Equation (5.30) and as it is done over each recursion level
contributes significantly to the total runtime. We are interested to see if the practical
results are close to the theoretical worst case scenario.

We did this for all the stencils and grid configurations. We plot the maximum,
minimum and the average of worst case ratios over the different instances per number
of nodes for the general five- and nine-point stencil in Figure 6.5, for the component
and Crank-Nicolson in Figure 6.6, for the general five-point stencil with 3 hops in
the first and large dimension in Figure 6.7 and in Figure 6.8 for the diagonal stencil.
The results indicate that on average the hyperplane algorithm performs less than
10% of the theoretical worst case number of hyperplane shifts.
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(a) General five-point stencil.
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(b) General nine-point stencil.

Figure 6.5: Worst case ratio, Equation (6.1) for different instances per node for the
general five-point (a) and nine-point stencil (b).
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(a) Component stencil.
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(b) Crank-Nicolson stencil.

Figure 6.6: Worst case ratio, Equation (6.1) for different instances per node for the
component (a) and Crank-Nicolson stencil (b).
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(a) General five-point stencil with 3 hops in
the first dimension.
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(b) General five-point stencil with 3 hops
in the last dimension.

Figure 6.7: Worst case ratio, Equation (6.1) for different instances per node for the
general five-point stencil with 3 hops in the first (a) and the last dimension (b).
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Figure 6.8: Worst case ratio, Equation (6.1) for different instances per node for the
diagonal stencil.



Chapter 6 Page 86

6.3 Amount of Inter-Node Communication

In this section, we count the total and maximum amount of inter-node communication
edges between the computation nodes for the different reordering schemes, including
MPI_Cart_create with reordering flag and compare it to the amount of inter-node
communication created by MPI_Cart_create without reordering, on the different
base communicators. The experiments have been done with three different base
communicators, i.e., an initial placement of the ranks on the computation nodes. The
base communicators where the standard, consecutive rank assignment of MPI, a rank
placement onto the nodes in a round-robin manner and a random rank assignment.

We will also compare the results obtain by the schemes presented in this thesis to
the VieM Mapping Tool [33, 34]. Recall Section 3.2.2 in Chapter 3 for a remainder
on how VieM works. In order to be comparable, we model the hardware system by
specifying in the input string to be the number of processes per node pnode and the
number of nodes N , i.e., s = pnode : N , while assuming that the distance on a node is 0
and the distance between the nodes is 1, i.e., c = 0 : 1. We are only interested in inter-
and intra-node communication and assume that the communication between entities
in the same level of the hierarchy is equally fast and with the chosen parameters,
can directly measure the amount of inter-node communication. VieM outputs the
obtained value for the objective function defined in Equation (1.1) in Chapter 1 and
therefore we did not have a value for the bottleneck computation node (the node with
maximal number of outgoing communication edges) and omitted the comparison.

We define the improvement of a rank reordering scheme over different base mapping
in the following way. Let Cbase, total and Cbase, max be the total amount of inter-node
communication cost and the amount of inter-node communication for the node with
maximal outgoing communication edges of the base communicator and CX, total and
CX, max the total amount of inter-node communication and the amount of inter-node
communication for the node with maximal outgoing communication edges of the
rank reordering algorithm X then we define the improvement to be

Cbase, total

CX, total
and

Cbase, max

CX, max
. (6.2)

Equation (6.2) shows the increase of the inter-node communication cost in the base
rank assignment scheme over the rank reordering techniques.

We measured the amount of inter-node communication by first creating a Cartesian
communicator with the different reordering schemes, if any. Given the Cartesian com-
municator, we created aN communicators consisting of the processes on the same node,
i.e., there are N communicators of size pnode. Given the Cartesian communicator and
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the node communicators, we can use a function called MPI_Group_translate_ranks
in MPI that maps the ranks of the processes of one communicator to the other.
With this function and the stencil, each process can count the number of commu-
nication neighbors on the same node. We aggregated the values over all processes
in order to get the sum and the maximum per node.

6.3.1 MPI’s Default Rank Order

Here, we present the improvement of inter-node communication neighbors over the
default mapping of MPI. Unfortunately, we cannot compare the algorithms presented
in this thesis to VieM for the Crank-Nicolson stencil, since it requires the input graph
to be undirected which is not the case. If we were to bypass this inconveniance
by making the stencil undirected, we change the structure of the stencil making
it hard to compare to the schemes presented in this thesis. For this reason, we
have decided to exclude VieM for the Crank-Nicolson stencil. In Figures 6.9, 6.10,
6.11 and 6.12, we averaged2 the results over all instances and plot the improvement
defined in Equation (6.2) for the total (blue) and the maximal (orange) number of
inter-node communication. The black line depicts the standard deviation. Overall
we can see that the hyperplane approach finds on average better or equal mappings
to Gropp’s [13, 14] approach. It is even capable to find better partitions than VieM
for the general five-point stencil. This is quite remarkable, since the runtime of
the hyperplane algorithm does not explicitly depend on the number of nodes and
vertices in the graph like VieM and thus finds better partitions in shorter time.
Unfortunately, both greedy approaches perform badly for all but the component
and the diagonal stencil. We can also see that Cart reorder does not yield any
kind of improvements over the non reordering version of MPI_Cart_create. For
the component stencil, Nodecart was able to find partitions with zero inter-node
communication cost for 4 out of 331 instances. The distributed greedy algorithm
found 16 instances with zero inter-node communication, whereas the centralized,
the hyperplane and VieM found 19 partitions with zero inter-node communication
cost. This was the case, for all tested base communicators.

2We used the geometric average.
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(b) General nine-point stencil

Figure 6.9: Improvement defined in Equation (6.2) over MPI’s default mapping for
the general five- (a) and nine-point stencil (b).
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(a) Diagonal stencil
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Figure 6.10: Improvement defined in Equation (6.2) over MPI’s default mapping for
the diagonal (a) and Crank-Nicolson stencil (b).
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(a) General five-point stencil with 3 hops in
the first dimension
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(b) General five-point stencil with 3 hops
in the last dimension

Figure 6.11: Improvement defined in Equation (6.2) over MPI’s default mapping
for the general five-point stencil with 3 hops in the first (a) and 3 hops in the last
dimension (b).

Ca
rt 

re
or

de
r

No
de

ca
rt

Ce
nt

ra
l G

re
ed

y

Di
st

rib
ut

ed
 G

re
ed

y

Hy
pe

rp
la

ne

Vi
eM

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Im
pr

ov
em

en
t

1.00
2.16 2.47 2.36

3.18 3.26

1.00
1.97 1.72 1.84

2.61

0.00

Improvement over cart comm no reorder
Total
max

Figure 6.12: Improvement defined in Equation (6.2) over MPI’s default mapping for
the component stencil.
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6.3.2 Round-Robin Rank Ordering

In Figures 6.13, 6.14 and 6.15 we plot the improvement, for all algorithms over
the Cartesian communicator instantiated with MPI_Cart_create on a base com-
municator with a round-robin assignment scheme. Since the initial mapping is far
away from the optimal, all schemes improve the amount of inter-node communica-
tion. We can see that the relative performance between the different approaches
is similar as in the default initial rank order scheme.
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(a) General five-point stencil
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(b) General nine-point stencil
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(c) Diagonal stencil
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(d) Crank-Nicolson stencil

Figure 6.13: Improvement defined in Equation (6.2) over an initial round-robin
mapping for the general five- (a), nine-point (b), the diagonal (c) and Crank-Nicolson
stencil (d).
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(a) General five-point stencil with 3 hops in
the first dimension
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(b) General five-point stencil with 3 hops
in the last dimension

Figure 6.14: Improvement defined in Equation (6.2) over an initial round-robin
mapping for the general five-point stencil with 3 hops in the first (a) and 3 hops in
the last dimension (b).
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Figure 6.15: Improvement defined in Equation (6.2) over an initial round-robin
mapping for the component stencil.
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6.3.3 Random Rank Ordering

Finally, we repeated the experiment with a random base communicator. The
improvements can be seen in Figures 6.16, 6.17 and 6.18. The improvement is
even better than for the round-robin base communicator, since the round-robin
scheme is not completely oblivious to the hardware, but the ratios between the
different schemes are approximately the same.
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(a) General five-point stencil
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(b) General nine-point stencil
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(c) Diagonal stencil
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(d) Crank-Nicolson stencil

Figure 6.16: Improvement defined in Equation (6.2) over an initial random mapping
for the general five- (a), nine-point (b), the diagonal (c) and Crank-Nicolson stencil
(d)
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(a) General five-point stencil with 3 hops in
the first dimension
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(b) General five-point stencil with 3 hops
in the last dimension

Figure 6.17: Improvement defined in Equation (6.2) over an initial random mapping
for the general five-point stencil with 3 hops in the first (a) and 3 hops in the last
dimension (b).
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Figure 6.18: Improvement defined in Equation (6.2) over an initial random mapping
for the component stencil.
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6.4 Improvements in Communication Time
In order to verify that the improvement over the default and Gropp’s mapping [13, 14]
also benefits the communication in terms of time, we benchmarked the communication
time needed for a stencil all-to-all communication, for different reordering schemes.
The experiment consisted of a stencil sweep, in which all processes sent and received
data of various size to and from their neighbors given by the stencil. The exchange
was done with the MPI_Neighbor_alltoall routine explained in Section 1.2.4 in
Chapter 1. The processes were synchronized with the MPI_Barrier function before
measuring the time of the message exchange. Processes exchanged data over 1500
iterations and in each iteration we captured the minimal from all maximum times and
the average time over all processes. We do this, since we are not only interested in
minimizing the maximum offnode communication over all the nodes, but we want to
reduce the total amount of inter-node communication. The maximum communication
time needed is strongly biased towards the bottleneck, since it is the node with the
largest amount of offnode communication. The QAP problem formulation does not
explicitly involve reducing the maximum number of offnode communication partners.
In order to prevent cold start issues, we initialized 3 initial warm-up runs, which
do not contribute to the experiment. We calculated the minimal of the maximum
and the average time in the following way: Let tmax and tavg denote the maximum
and the average time over all processes for a run, i.e.,

tavg =
P∑
i=1

ti
P
, (6.3)

where P is the number of processes then the minimal maximum maxmin and the
average of average µavg for an experiment is defined as

max
min

= min(tmax, max
min

)

µavg =

∑
exchanges tavg

exchanges

(6.4)

where exchanges is the number of exchanges. The code snippet for this
experiment can be seen in Listing 6.2.3

We plot the bandwidth for different stencils and different rank reordering schemes
for grid instances with 33 nodes, 32 processes per node and 3 dimensions. The
amount of total and maximum inter-node communication can be found in Tables

3 MPI_Wtime returns the elapsed seconds after a time-point in the past.
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Table 6.1: Total number of inter-node communication edges for different reordering
schemes

Rank Reordering Scheme Stencil types
five point nine point component five point hops last diagonal five point hops first crank nicolson

cart 2416 16324 2416 2416 6160 5760 4530
cart reorder 2416 16324 2416 2416 6160 5760 4530
nodecart 2272 15928 2272 2272 6160 4032 4260
central greedy 2402 16166 688 3998 2872 4228 4502
dist greedy 2660 13572 888 3626 3012 3946 4863
hyperplane 1552 12544 944 1888 4000 2592 2880

Table 6.2: Max number of inter-node communication edges for different reordering
schemes

Rank Reordering Scheme Stencil types
five point nine point component five point hops last diagonal five point hops first crank nicolson

cart 80 572 80 80 224 208 150
cart reorder 80 572 80 80 224 208 150
nodecart 80 572 80 80 224 160 150
central greedy 127 638 48 162 140 220 197
dist greedy 118 558 55 155 136 159 193
hyperplane 80 539 72 80 224 112 150

6.1 and 6.2. One can see the average bandwidth in Bytes/s of the different schemes
for the mentioned constellation in Figure 6.19 for the five- and nine-point stencil, in
Figure 6.20 for the diagonal and the Crank-Nicolson stencil, in Figure 6.21 for the
general five-point stencil with 3 hops in the first and last direction and in Figure 6.22
for the component stencil. The performance is in general proportional to the total
number of inter-node communication. The hyperplane algorithm finds partitions with
the lowest amount inter-node communication for the five-point, the nine-point, the
five-points with hops in the first and last direction and the Crank-Nicolson stencil.
Astoundingly, the distributed greedy algorithm has about 8% more total inter-node
communication than the hyperplane algorithm, but has an increased in average
bandwidth of up to 19% over the bandwidth induced by the hyperplane algorithm.
Both greedy approaches did not perform well for the general five-point stencil, with
or without hops, but could further improve the bandwidth for the diagonal stencils
which was designed to be difficult to partition well for the hyperplane algorithm.
Interestingly, the bandwidth seemed to be improving inconsistently for only some
reordering schemes and messages sizes larger than ≈ 14000 bytes.

The minimal maximum maxmin bandwidth can be seen in Figures 6.23, 6.24
6.25 and 6.26. By comparing the amount of inter-node communication for the
bottleneck node, we can see that the hyperplane approach yielded mappings with
less or equal amount of maximal off-node communication than Nodecart or the
two mappings of MPI, for all stencils. The two greedy approaches could outperform
the hyperplane algorithm in the case of the component and the diagonal stencil.
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For the diagonal stencil, the hyperplane algorithm has 65% more maximal inter-
node communication edges than the distributed greedy appraoch, which resulted
in an increase of up to a factor of 3 in bandwidth.

The standard deviation for the mean neighbor all-to-all exchange can be seen
in Appendix A, in Tables A.8, A.9, A.10, A.11, A.12, A.13, A.14.

Listing 6.2: Code snippet for the communication exchange benchmark
//Loop over the exchanges
for( int ex = 0; ex < n_exchanges; ex++ ){

// Synchronize and measure the time
MPI_Barrier(dist_graph_comm );
start = MPI_Wtime ();
MPI_Neighbor_alltoall(send_buff , size ,

MPI_DOUBLE , recv_buff , size ,
MPI_DOUBLE , dist_graph_comm );

end = MPI_Wtime ();

//check if message is correct
checkup( ... )

ellapsed = end - start;

// Reduce the obtained result
MPI_Allreduce (&ellapsed , &one_run_max , 1,

MPI_DOUBLE , MPI_MAX ,
dist_graph_comm );

MPI_Allreduce (&ellapsed , &one_run_avg , 1,
MPI_DOUBLE , MPI_SUM ,
dist_graph_comm );

//save the values and average the time over
//all provesses for run_avg
min_max_time = std::max(one_run_max , min_max_time );
run_avg +=

one_run_avg /( w_size*n_exchanges );
}
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(a) General five-point stencil
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(b) General nine-point stencil

Figure 6.19: Bandwidth for MPI_Neighbor_alltoall of different algorithms for the
general five- (a) and nine-point stencil (b).
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(a) Diagonal stencil
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(b) Crank-Nicolson stencil

Figure 6.20: Bandwidth for MPI_Neighbor_alltoall of different algorithms for the
diagonal (a) and Crank-Nicolson stencil (b).
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(a) General five-point stencil with 3 hops in
the last dimension
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(b) General five-point stencil with 3 hops
in the first dimension

Figure 6.21: Bandwidth for MPI_Neighbor_alltoall of different algorithms for the
general five-point stencil with 3 hops in the first (a) and 3 hops in the last dimension
(b).
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Figure 6.22: Bandwidth for MPI_Neighbor_alltoall of different algorithms for the
component stencil.
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(a) General five-point stencil
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(b) General nine-point stencil

Figure 6.23: Minimal maximum bandwidth for MPI_Neighbor_alltoall of different
algorithms for the general five- (a) and nine-point stencil (b).
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(a) Diagonal stencil
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(b) Crank-Nicolson stencil

Figure 6.24: Minimal maximum bandwidth for MPI_Neighbor_alltoall of different
algorithms for the diagonal (a) and Crank-Nicolson stencil (b).
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(a) General five-point stencil with 3 hops in
the last dimension
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(b) General five-point stencil with 3 hops
in the first dimension

Figure 6.25: Minimal maximum bandwidth for MPI_Neighbor_alltoall of different
algorithms for the general five-point stencil with 3 hops in the first (a) and 3 hops in
the last dimension (b).
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Figure 6.26: Minimal maximum bandwidth for MPI_Neighbor_alltoall of different
algorithms for the component stencil.
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6.5 Instantiation Time
In this section, we measure the instantiation time T in seconds for the different,
presented algorithms and stencils. We repeated the experiments 50 times and
always used the maximum time a process needed for the instantiation. We show the
instantiation time T with varying number of nodes and a fixed number of processes
per node (32) and number of dimensions (3) in Figure 6.27 for the general five- and
nine-point stencil, in Figure 6.28 for the diagonal and the Crank-Nicolson stencil,
in Figure 6.29 for the five-point stencils with 3 hops in the first and last dimension
and in Figure 6.30 for the component stencil. Note the exponential scale of the time
axis. The standard deviation can be found in the Tables A.1, A.2, A.3, A.4, A.5,
A.6, A.7. The time was measured for the complete instantiation of the Cartesian
communicators. To be more precise, we instantiated a new Cartesian communicator
with the MPI_Cart_create routine with the new, calculated rank order if any. We
measured the whole process of instantiation, i.e., the calculation of the reordering
and the instantiation of the communicators, thus in order to compare only the
runtime for the reordering schemes, we can subtract the time needed for a Cartesian
communicator instantiated in the default way of MPI without reordering. One can
see that the two versions of MPI_Cart_create are almost by an order of magnitude
faster than the other schemes. This indicates once more, that the reorder flag in
the MPI_Cart_create does not perform any reordering. For the small instances, the
runtime of the hyperplane algorithm matches that of Nodecart, but produces better
mappings. The distributed greedy approach is by far the most expensive, due to
its initial BFS and the final rank assignment control routine.4

4During the experiments, we encountered problems with a node and had to exclude the instance
with 36 computation nodes.



Chapter 6 Page 102

5 10 15 20 25 30
Number of nodes N

10 4

10 3

10 2

T

Cart no reorder 
Cart reorder 
Gropp 
Central greedy 
Distributed greedy 
Hyperplane 

(a) General five-point stencil
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Figure 6.27: Instantiation time of different algorithms for the general five- (a) and
nine-point stencil (b).
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(a) Diagonal stencil

5 10 15 20 25 30
Number of nodes N

10 4

10 3

10 2

T

Cart no reorder 
Cart reorder 
Gropp 
Central greedy 
Distributed greedy 
Hyperplane 

(b) Crank-Nicolson stencil

Figure 6.28: Instantiation time of different algorithms for the diagonal (a) and
Crank-Nicolson stencil (b).
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(a) General five-point stencil with 3 hops in
the last dimension
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(b) General five-point stencil with 3 hops
in the first dimension

Figure 6.29: Instantiation time of different algorithms for the general five-point stencil
with 3 hops in the first (a) and 3 hops in the last dimension (b).
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Figure 6.30: Instantiation time of different algorithms for the component stencil.





Chapter 7

Conclusions

We conclude the thesis in this section, with a brief summary of what was done over
the chapters. Finally, we give an outlook on some possible future work.

7.1 Summary

The problem of inter-node communication reduction is important, since it can signifi-
cantly improve the performance of parallel applications. Several attempts were made
to efficiently map Cartesian topologies to parallel machines with hierarchical commu-
nication performance. In this thesis we attempted to derive approaches in MPI for
mapping Cartesian graphs induced by isomorphic communication on Cartesian grids
onto computation nodes s.t. the total number of inter-node communication is reduced.

In Chapter 1 we provided the necessary vocabulary and definitions for the
reader and introduced MPI and some of its routines. We defined exactly what
we mean with isomorphic communication and Cartesian graphs and introduced
some necessary functions which are valuable for understanding the algorithms and
the experiments conducted in Chapter 6.

Chapter 2 provided the motivation for this thesis. We showed examples for the
increase of intra-node communication. Further, we introduced a problem formulation
and defined what the objective was, namely to find an algorithm that experimentally
outperforms Gropp’s approach, while having a fast theoretical runtime.

We continued in Chapter 3 by giving an overview of relevant research of the
mapping problem. We reported some approaches developed specifically for MPI
and other general graph mapping techniques. More importantly, we introduced
Gropp’s Nodecart [13, 14] approach and the Vienna Mapping tool developed by
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Schulz and Träff [33, 34] since we compared our approaches in terms of inter-
node communication reduction to them.

The two greedy approaches were presented in Chapter 4. We showed the concept
of the greedy rank assignment of the processes to the computation nodes using a
priority queue. This approach was quite simple, but centralized and thus did not
scale well. For that purpose we introduced the distributed greedy approach which
performed initial BFS runs in order to find ranks that have maximal distance to
one another in the graph theoretical sense. Each of those ranks were assigned to a
computation node and were responsible to fill it up, using the same greedy approach
as the centralized one. The theoretical runtime of these two approaches was still in the
number of vertices and edges of the input graph, which was too slow for our objective.

In Chapter 5 we introduced the hyperplane algorithm, which recursively splits the
input Cartesian graph along a grid dimension, while trying to maximize parallelism
between the cutting hyperplane and the overall stencil communication. The big
advantage of this approach was that each process could calculate its new rank without
the need for communication. We could show, that it was always possible to find
these cuts and could derive a theoretical runtime that is no longer dependent on
the number of vertices and edges of the input graph.

The experimental evaluation of the presented schemes was done Chapter 6. There,
we first benchmarked the behavior of the runtime of the hyperplane approach in terms
of recursion tree depth and number of hyperplane shifts. Further, we compared the
amount of improvement the different schemes provide over the amount of inter-node
communication induces by MPI_Cart_create for different initial rank assignments.
We tested this for a variety of stencils and grid configurations and could show, that
for the tested instances the hyperplane algorithm was on average able to outperform
Gropp’s Nodecart approach. In case of the general five-point stencil, it was even able
to outperform the general graph mapping software VieM. The two greedy approaches
were only beneficial for some stencils and for others were even worse in terms of inter-
node communication than MPI_Cart_create. We further investigated the implications
of the reduction of inter-node communication for a neighbor all-to-all routine. We
could show for a specific grid instance, that the hyperplane algorithm indeed resulted in
an increase of bandwidth, even though we saw inconsistent patterns for the distributed
greedy approach and sudden bursts of bandwidth for certain message sizes for some
reordering schemes. The chapter is concluded with a comparison of instantiation time
for a specific grid instance and different stencils. We could show for the small input
graphs, that the hyperplane approach was approximately as fast as Gropp’s Nodecart
algorithm. Thus, by showing that we could further reduce the amoung inter-node
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communication than Gropp for arbitrary isomorphic communication patterns and
compete with him in terms of runtime, we achieved the initially stated goal.

7.2 Future Work
Firstly, we can extend the hyperplane algorithm to be able to be applied to systems
with different node sizes. This can be done by initially performing more work in
exploring and communicating the different nodes sizes and keeping track of those sizes
while assigning the ranks for the greedy approaches. The hyperplane algorithm could
partition the Cartesian graph using the smallest or largest node size and then map the
partitions consecutively to the computation nodes. This approach is not ideal, since
some partitions can be spread across multiple nodes, but allows using asymmetrical
systems and can be helpful. It would be interesting to test the approaches on bigger
machines incorporating more nodes and processes per node.

As further possible improvement in terms of inter-node communication cost for the
hyperplane algorithm, we could position the hyperplane in a boundary aware manner.
That is, instead of moving the hyperplane in the decreasing dimension direction, we can
push it towards the borders of the original grid. Intuitively, if the grid is non-periodic,
this could improve the total and maximal number of inter-node communication edges.
Since the direction of hyperplane shift is only dependent on the position of the subgrid
in the original grid, this position awareness would not diminish the runtime.

Additionally, we can extend our approaches to handle weighted Cartesian graphs
C. The weights of the communication edges could represent message sizes or commu-
nication frequency. By incorporating this information in the stencil, we can adapt the
objective function that determines the split quality of a dimension for the hyperplane
algorithm or the priority of a neighbor in the greedy approaches.

At last, we could extend all the methods to be applicable to multiple hierarchy
levels and reorder the ranks accordingly, trying to minimize the inter-entity com-
munication on each hardware level. This could be done with hierarchy information
extraction tools, such as HWLOC or by the different types in Open Mpi 4.0.1 for
the MPI_Comm_split_type routine, should they be implemented.
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Appendix

A.1 Standard Deviation for Instantiation Time

Table A.1: Standard deviation of instatiation time in seconds for the five point stencil,
32 processes per node and 3 dimensions

Reordering Scheme Number of nodes
6 9 12 15 18 21 24 27 30 33

Cart no reorder 1.71e− 04 5.90e− 05 5.40e− 05 6.60e− 05 6.30e− 05 8.20e− 05 7.10e− 05 8.40e− 05 8.30e− 05 8.20e− 05
Cart reorder 6.00e− 06 5.00e− 06 6.00e− 06 1.00e− 05 8.00e− 06 7.00e− 06 1.40e− 05 1.30e− 05 8.00e− 06 1.60e− 05
Gropp 5.46e− 04 7.57e− 04 2.47e− 03 1.22e− 03 1.33e− 03 1.39e− 03 9.69e− 04 1.64e− 03 1.33e− 03 1.23e− 03
Central greedy 4.00e− 04 5.05e− 04 4.91e− 04 5.03e− 04 5.63e− 04 7.29e− 04 6.77e− 04 5.40e− 04 5.50e− 04 7.19e− 04
Distributed greedy 5.82e− 04 6.81e− 04 5.00e− 04 4.69e− 04 6.88e− 04 7.31e− 04 8.01e− 04 8.92e− 04 1.06e− 03 1.41e− 03
Hyperplane 2.62e− 04 3.04e− 04 4.00e− 04 4.13e− 04 5.10e− 04 5.08e− 04 3.95e− 04 4.63e− 04 4.57e− 04 4.59e− 04

Table A.2: Standard deviation of instatiation time in seconds for the nine point
stencil, 32 processes per node and 3 dimensions

Reordering Scheme Number of nodes
6 9 12 15 18 21 24 27 30 33

Cart no reorder 4.90e− 05 5.30e− 05 5.60e− 05 7.00e− 05 1.10e− 04 8.60e− 05 1.18e− 04 1.20e− 04 9.90e− 05 1.78e− 04
Cart reorder 4.00e− 06 5.00e− 06 7.00e− 06 1.50e− 05 9.60e− 05 2.50e− 05 1.33e− 04 5.20e− 05 6.20e− 05 9.70e− 05
Gropp 5.60e− 04 1.77e− 03 1.23e− 03 1.35e− 03 1.16e− 03 1.45e− 03 8.84e− 04 1.64e− 03 1.34e− 03 1.13e− 03
Central greedy 2.72e− 04 5.76e− 04 4.64e− 04 4.08e− 04 6.43e− 04 6.41e− 04 6.87e− 04 7.16e− 04 7.57e− 04 9.04e− 04
Distributed greedy 3.52e− 04 7.59e− 04 6.66e− 04 7.51e− 04 8.77e− 04 1.44e− 03 1.32e− 03 1.45e− 03 1.33e− 03 1.59e− 03
Hyperplane 2.45e− 04 3.08e− 04 3.57e− 04 4.28e− 04 5.34e− 04 5.69e− 04 2.62e− 04 8.05e− 04 5.51e− 04 5.33e− 04
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Table A.3: Standard deviation of instatiation time in seconds for the diagonal stencil,
32 processes per node and 3 dimensions

Reordering Scheme Number of nodes
6 9 12 15 18 21 24 27 30 33

Cart no reorder 4.60e− 05 5.20e− 05 5.50e− 05 6.90e− 05 6.70e− 05 7.80e− 05 6.50e− 05 8.40e− 05 8.50e− 05 1.02e− 04
Cart reorder 7.00e− 06 4.00e− 06 6.00e− 06 1.90e− 05 1.60e− 05 7.00e− 06 1.20e− 05 1.20e− 05 8.00e− 06 6.40e− 05
Gropp 5.56e− 04 9.23e− 04 1.03e− 03 1.19e− 03 1.17e− 03 2.85e− 03 8.51e− 04 1.45e− 03 1.71e− 03 1.30e− 03
Central greedy 2.65e− 04 3.24e− 04 3.88e− 04 4.06e− 04 6.91e− 04 4.90e− 04 5.11e− 04 7.54e− 04 9.64e− 04 7.90e− 04
Distributed greedy 3.36e− 04 4.09e− 04 5.70e− 04 9.49e− 04 9.96e− 04 1.25e− 03 1.47e− 03 1.81e− 03 2.27e− 03 2.25e− 03
Hyperplane 2.25e− 04 4.10e− 04 4.07e− 04 4.24e− 04 5.23e− 04 6.48e− 04 3.06e− 04 4.82e− 04 7.48e− 04 5.26e− 04

Table A.4: Standard deviation of instatiation time in seconds for the crank nicolson
stencil, 32 processes per node and 3 dimensions

Reordering Scheme Number of nodes
6 9 12 15 18 21 24 27 30 33

Cart no reorder 1.17e− 03 5.30e− 05 5.80e− 05 6.20e− 05 6.70e− 05 8.10e− 05 1.55e− 03 7.50e− 05 1.44e− 04 2.64e− 04
Cart reorder 4.00e− 06 1.40e− 05 5.00e− 06 8.00e− 06 8.00e− 06 5.00e− 06 7.50e− 05 9.00e− 06 1.40e− 05 6.70e− 05
Gropp 5.52e− 04 7.42e− 04 2.31e− 03 1.29e− 03 1.45e− 03 1.58e− 03 7.79e− 04 1.39e− 03 1.37e− 03 1.15e− 03
Central greedy 3.27e− 04 4.26e− 04 5.05e− 04 5.30e− 04 6.15e− 04 7.16e− 04 8.12e− 04 6.08e− 04 8.71e− 04 8.62e− 04
Distributed greedy 3.41e− 04 4.50e− 04 5.60e− 04 7.32e− 04 8.68e− 04 8.43e− 04 1.28e− 03 2.18e− 03 1.97e− 03 2.04e− 03
Hyperplane 2.18e− 04 3.10e− 04 3.95e− 04 4.13e− 04 4.97e− 04 5.15e− 04 3.01e− 04 4.54e− 04 6.09e− 04 7.19e− 04

Table A.5: Standard deviation of instatiation time in seconds for the five point hops
first stencil, 32 processes per node and 3 dimensions

Reordering Scheme Number of nodes
6 9 12 15 18 21 24 27 30 33

Cart no reorder 4.70e− 05 5.70e− 05 5.70e− 05 7.00e− 05 6.40e− 05 7.60e− 05 6.70e− 05 7.70e− 05 1.03e− 04 3.93e− 04
Cart reorder 5.00e− 06 8.00e− 06 7.00e− 06 7.00e− 06 1.30e− 05 7.00e− 06 1.20e− 05 2.30e− 05 3.70e− 05 1.34e− 04
Gropp 5.53e− 04 7.38e− 04 3.06e− 03 1.37e− 03 1.26e− 03 1.98e− 03 8.27e− 04 1.69e− 03 1.29e− 03 1.31e− 03
Central greedy 2.04e− 03 3.21e− 04 3.83e− 04 4.01e− 04 4.76e− 04 6.31e− 04 5.67e− 04 5.03e− 04 4.62e− 04 9.85e− 04
Distributed greedy 3.40e− 04 5.05e− 04 4.38e− 04 6.04e− 04 6.46e− 04 1.03e− 03 7.66e− 04 1.36e− 03 1.11e− 03 1.96e− 03
Hyperplane 2.02e− 04 2.81e− 04 3.63e− 04 4.16e− 04 4.68e− 04 5.15e− 04 3.79e− 04 4.77e− 04 4.55e− 04 9.05e− 04

Table A.6: Standard deviation of instatiation time in seconds for the five point hops
last stencil, 32 processes per node and 3 dimensions

Reordering Scheme Number of nodes
6 9 12 15 18 21 24 27 30 33

Cart no reorder 4.80e− 05 5.40e− 05 5.40e− 05 7.20e− 05 7.10e− 05 7.30e− 05 7.00e− 05 8.50e− 05 8.40e− 05 9.70e− 05
Cart reorder 6.00e− 06 7.00e− 06 6.00e− 06 8.00e− 06 8.00e− 06 9.00e− 06 1.30e− 05 8.00e− 06 1.30e− 05 7.40e− 05
Gropp 5.59e− 04 2.31e− 03 9.33e− 04 1.21e− 03 1.10e− 03 1.44e− 03 8.03e− 04 1.60e− 03 1.33e− 03 1.17e− 03
Central greedy 3.47e− 04 4.02e− 04 4.86e− 04 5.55e− 04 5.34e− 04 5.34e− 04 5.47e− 04 5.42e− 04 5.75e− 04 6.20e− 04
Distributed greedy 3.21e− 04 4.30e− 04 4.97e− 04 4.59e− 04 6.34e− 04 6.64e− 04 8.42e− 04 1.12e− 03 1.31e− 03 1.40e− 03
Hyperplane 2.30e− 04 2.95e− 04 4.22e− 04 4.17e− 04 4.96e− 04 5.42e− 04 3.88e− 04 5.37e− 04 5.35e− 04 4.46e− 04
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Table A.7: Standard deviation of instatiation time in seconds for the component
stencil, 32 processes per node and 3 dimensions

Reordering Scheme Number of nodes
6 9 12 15 18 21 24 27 30 33

Cart no reorder 4.40e− 05 5.70e− 05 5.50e− 05 6.90e− 05 7.10e− 05 7.20e− 05 7.10e− 05 8.10e− 05 8.00e− 05 8.20e− 05
Cart reorder 9.00e− 06 6.00e− 06 8.00e− 06 9.00e− 06 6.00e− 06 1.20e− 05 6.00e− 06 1.10e− 05 1.40e− 05 1.50e− 05
Gropp 5.55e− 04 2.17e− 03 1.06e− 03 1.16e− 03 1.72e− 03 1.42e− 03 7.79e− 04 1.49e− 03 1.50e− 03 1.52e− 03
Central greedy 9.20e− 05 3.24e− 04 6.55e− 04 6.34e− 04 6.42e− 04 6.03e− 04 4.98e− 04 4.81e− 04 3.57e− 04 3.02e− 04
Distributed greedy 2.25e− 04 2.13e− 04 5.19e− 04 7.37e− 04 9.95e− 04 1.23e− 03 1.67e− 03 2.44e− 03 3.61e− 03 2.86e− 03
Hyperplane 2.65e− 04 2.99e− 04 3.60e− 04 4.32e− 04 5.09e− 04 7.09e− 04 1.91e− 04 8.56e− 04 6.66e− 04 7.55e− 04
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A.2 Standard Deviation for Neighbor All-to-all Rou-
tine

Table A.8: Standard deviation for the average time bandwidth in bytes per seconds
of the neighbor all-to-all routine, the five point stencil, 33 nodes, 32 processes per
node and 3 dimensions

Number of Bytes Rank Reordering Scheme
cart reorder dist greedy cart nodecart cart central greedy cart hyperplane cart

80 2.05e+ 06 2.05e+ 06 2.00e+ 06 2.00e+ 06 2.05e+ 06 2.05e+ 06
160 4.57e+ 06 4.44e+ 06 4.44e+ 06 4.44e+ 06 4.57e+ 06 4.44e+ 06
240 6.49e+ 06 6.49e+ 06 6.49e+ 06 6.67e+ 06 6.67e+ 06 6.67e+ 06
320 8.42e+ 06 8.42e+ 06 8.42e+ 06 8.42e+ 06 8.65e+ 06 8.42e+ 06
400 9.76e+ 06 9.76e+ 06 1.03e+ 07 1.03e+ 07 1.05e+ 07 1.03e+ 07
480 1.12e+ 07 1.14e+ 07 1.20e+ 07 1.20e+ 07 1.20e+ 07 1.17e+ 07
560 1.27e+ 07 1.27e+ 07 1.37e+ 07 1.37e+ 07 1.37e+ 07 1.33e+ 07
640 1.39e+ 07 1.39e+ 07 1.49e+ 07 1.52e+ 07 1.56e+ 07 1.49e+ 07
800 1.54e+ 07 1.54e+ 07 1.74e+ 07 1.74e+ 07 1.78e+ 07 1.67e+ 07
1600 2.16e+ 07 2.16e+ 07 2.67e+ 07 2.58e+ 07 2.76e+ 07 2.32e+ 07
2400 2.45e+ 07 2.45e+ 07 3.12e+ 07 2.93e+ 07 3.24e+ 07 2.61e+ 07
3200 2.76e+ 07 2.76e+ 07 3.40e+ 07 3.14e+ 07 3.76e+ 07 2.91e+ 07
4000 2.94e+ 07 2.92e+ 07 3.54e+ 07 3.20e+ 07 3.96e+ 07 3.08e+ 07
4800 2.96e+ 07 2.96e+ 07 3.50e+ 07 3.20e+ 07 4.03e+ 07 3.12e+ 07
5600 2.98e+ 07 2.98e+ 07 3.48e+ 07 3.20e+ 07 4.06e+ 07 3.13e+ 07
6400 3.00e+ 07 3.02e+ 07 3.56e+ 07 3.25e+ 07 4.13e+ 07 3.20e+ 07
8000 3.04e+ 07 3.05e+ 07 3.56e+ 07 3.28e+ 07 4.21e+ 07 3.25e+ 07
16000 3.07e+ 07 3.07e+ 07 3.63e+ 07 3.35e+ 07 4.27e+ 07 3.27e+ 07
24000 5.17e+ 07 5.22e+ 07 4.44e+ 07 3.88e+ 07 6.88e+ 07 5.29e+ 07
32000 5.51e+ 07 5.50e+ 07 4.64e+ 07 3.99e+ 07 7.69e+ 07 5.57e+ 07
40000 5.71e+ 07 5.69e+ 07 4.71e+ 07 4.02e+ 07 8.13e+ 07 5.78e+ 07
48000 5.84e+ 07 5.83e+ 07 4.81e+ 07 4.07e+ 07 8.32e+ 07 5.89e+ 07
56000 5.95e+ 07 5.95e+ 07 4.82e+ 07 4.04e+ 07 8.42e+ 07 6.00e+ 07
64000 6.02e+ 07 6.02e+ 07 4.86e+ 07 4.07e+ 07 8.51e+ 07 6.07e+ 07
72000 5.78e+ 07 5.79e+ 07 4.76e+ 07 4.02e+ 07 8.23e+ 07 5.96e+ 07
80000 5.82e+ 07 5.83e+ 07 4.76e+ 07 4.01e+ 07 8.32e+ 07 6.03e+ 07
88000 5.88e+ 07 5.87e+ 07 4.75e+ 07 4.02e+ 07 8.38e+ 07 6.11e+ 07
96000 5.90e+ 07 5.90e+ 07 4.74e+ 07 3.99e+ 07 8.40e+ 07 6.14e+ 07
104000 5.95e+ 07 5.94e+ 07 4.74e+ 07 4.00e+ 07 8.45e+ 07 6.19e+ 07
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Table A.9: Standard deviation for the average time bandwidth in bytes per seconds
of the neighbor all-to-all routine, the nine point stencil, 33 nodes, 32 processes per
node and 3 dimensions

Number of Bytes Rank Reordering Scheme
cart reorder dist greedy cart nodecart cart central greedy cart hyperplane cart

80 6.15e+ 05 6.15e+ 05 5.93e+ 05 5.26e+ 05 5.52e+ 05 6.20e+ 05
160 1.30e+ 06 1.30e+ 06 1.28e+ 06 1.17e+ 06 1.23e+ 06 1.31e+ 06
240 1.88e+ 06 1.88e+ 06 1.88e+ 06 1.71e+ 06 1.79e+ 06 1.92e+ 06
320 2.37e+ 06 2.37e+ 06 2.41e+ 06 2.22e+ 06 2.29e+ 06 2.46e+ 06
400 2.65e+ 06 2.65e+ 06 2.76e+ 06 2.61e+ 06 2.65e+ 06 2.76e+ 06
480 2.96e+ 06 2.98e+ 06 3.16e+ 06 3.06e+ 06 3.04e+ 06 3.04e+ 06
560 3.20e+ 06 3.20e+ 06 3.48e+ 06 3.44e+ 06 3.35e+ 06 3.24e+ 06
640 3.35e+ 06 3.35e+ 06 3.74e+ 06 3.81e+ 06 3.64e+ 06 3.40e+ 06
800 3.52e+ 06 3.52e+ 06 3.96e+ 06 4.28e+ 06 3.90e+ 06 3.56e+ 06
1600 3.93e+ 06 3.93e+ 06 4.61e+ 06 5.35e+ 06 4.60e+ 06 3.95e+ 06
2400 4.02e+ 06 4.01e+ 06 4.75e+ 06 5.67e+ 06 4.76e+ 06 4.03e+ 06
3200 4.12e+ 06 4.12e+ 06 4.89e+ 06 5.88e+ 06 4.89e+ 06 4.10e+ 06
4000 4.20e+ 06 4.21e+ 06 4.90e+ 06 5.87e+ 06 4.97e+ 06 4.15e+ 06
4800 4.26e+ 06 4.26e+ 06 5.01e+ 06 6.04e+ 06 5.07e+ 06 4.21e+ 06
5600 4.28e+ 06 4.29e+ 06 5.07e+ 06 6.16e+ 06 5.15e+ 06 4.26e+ 06
6400 4.37e+ 06 4.37e+ 06 5.14e+ 06 6.34e+ 06 5.27e+ 06 4.34e+ 06
8000 4.38e+ 06 4.38e+ 06 5.11e+ 06 6.37e+ 06 5.28e+ 06 4.35e+ 06
16000 4.43e+ 06 4.43e+ 06 5.04e+ 06 6.46e+ 06 5.31e+ 06 4.34e+ 06
24000 4.24e+ 06 4.24e+ 06 4.65e+ 06 5.78e+ 06 4.96e+ 06 4.16e+ 06
32000 4.24e+ 06 4.24e+ 06 4.66e+ 06 5.80e+ 06 5.03e+ 06 4.17e+ 06
40000 4.24e+ 06 4.23e+ 06 4.62e+ 06 5.75e+ 06 4.98e+ 06 4.17e+ 06
48000 4.25e+ 06 4.24e+ 06 4.64e+ 06 5.80e+ 06 5.03e+ 06 4.19e+ 06
56000 4.23e+ 06 4.22e+ 06 4.61e+ 06 5.73e+ 06 5.00e+ 06 4.17e+ 06
64000 4.23e+ 06 4.22e+ 06 4.61e+ 06 5.72e+ 06 5.01e+ 06 4.18e+ 06
72000 4.37e+ 06 4.37e+ 06 4.83e+ 06 6.01e+ 06 5.29e+ 06 4.26e+ 06
80000 4.38e+ 06 4.36e+ 06 4.82e+ 06 6.00e+ 06 5.29e+ 06 4.26e+ 06
88000 4.38e+ 06 4.37e+ 06 4.81e+ 06 5.99e+ 06 5.28e+ 06 4.28e+ 06
96000 4.38e+ 06 4.37e+ 06 4.81e+ 06 5.99e+ 06 5.28e+ 06 4.28e+ 06
104000 4.38e+ 06 4.36e+ 06 4.80e+ 06 5.97e+ 06 5.27e+ 06 4.28e+ 06
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Table A.10: Standard deviation for the average time bandwidth in bytes per seconds
of the neighbor all-to-all routine, the component stencil, 33 nodes, 32 processes per
node and 3 dimensions

Number of Bytes Rank Reordering Scheme
cart reorder dist greedy cart nodecart cart central greedy cart hyperplane cart

80 3.48e+ 06 3.48e+ 06 2.76e+ 06 2.76e+ 06 3.20e+ 06 3.33e+ 06
160 7.62e+ 06 7.62e+ 06 6.15e+ 06 6.15e+ 06 7.27e+ 06 7.27e+ 06
240 1.09e+ 07 1.14e+ 07 8.89e+ 06 8.89e+ 06 1.04e+ 07 1.09e+ 07
320 1.45e+ 07 1.45e+ 07 1.14e+ 07 1.14e+ 07 1.23e+ 07 1.45e+ 07
400 1.67e+ 07 1.74e+ 07 1.38e+ 07 1.38e+ 07 1.67e+ 07 1.74e+ 07
480 1.66e+ 07 1.92e+ 07 1.55e+ 07 1.60e+ 07 2.00e+ 07 1.66e+ 07
560 2.07e+ 07 2.15e+ 07 1.81e+ 07 1.75e+ 07 2.24e+ 07 2.15e+ 07
640 2.37e+ 07 2.37e+ 07 2.00e+ 07 2.00e+ 07 2.46e+ 07 2.46e+ 07
800 2.67e+ 07 2.67e+ 07 2.29e+ 07 2.29e+ 07 2.96e+ 07 2.76e+ 07
1600 3.40e+ 07 3.40e+ 07 3.64e+ 07 3.72e+ 07 4.44e+ 07 3.56e+ 07
2400 3.64e+ 07 3.64e+ 07 4.53e+ 07 4.71e+ 07 5.22e+ 07 3.81e+ 07
3200 3.81e+ 07 3.81e+ 07 5.52e+ 07 5.61e+ 07 5.82e+ 07 3.95e+ 07
4000 3.92e+ 07 3.92e+ 07 6.15e+ 07 6.15e+ 07 5.97e+ 07 4.04e+ 07
4800 4.03e+ 07 4.00e+ 07 6.49e+ 07 6.32e+ 07 6.32e+ 07 4.10e+ 07
5600 4.09e+ 07 4.09e+ 07 6.59e+ 07 6.36e+ 07 6.51e+ 07 4.15e+ 07
6400 4.16e+ 07 4.16e+ 07 6.81e+ 07 6.60e+ 07 6.74e+ 07 4.24e+ 07
8000 4.23e+ 07 4.21e+ 07 7.02e+ 07 6.72e+ 07 6.96e+ 07 4.32e+ 07
16000 4.48e+ 07 4.47e+ 07 7.11e+ 07 6.84e+ 07 7.51e+ 07 4.76e+ 07
24000 5.26e+ 07 5.25e+ 07 1.12e+ 08 1.01e+ 08 9.41e+ 07 5.32e+ 07
32000 5.50e+ 07 5.49e+ 07 1.32e+ 08 1.14e+ 08 1.02e+ 08 5.57e+ 07
40000 5.71e+ 07 5.68e+ 07 1.51e+ 08 1.25e+ 08 1.09e+ 08 5.78e+ 07
48000 5.84e+ 07 5.81e+ 07 1.62e+ 08 1.31e+ 08 1.11e+ 08 5.88e+ 07
56000 5.96e+ 07 5.94e+ 07 1.70e+ 08 1.36e+ 08 1.14e+ 08 5.98e+ 07
64000 6.02e+ 07 6.02e+ 07 1.76e+ 08 1.40e+ 08 1.16e+ 08 6.06e+ 07
72000 5.77e+ 07 5.78e+ 07 1.70e+ 08 1.36e+ 08 1.13e+ 08 6.00e+ 07
80000 5.81e+ 07 5.80e+ 07 1.73e+ 08 1.37e+ 08 1.14e+ 08 6.06e+ 07
88000 5.83e+ 07 5.84e+ 07 1.74e+ 08 1.38e+ 08 1.15e+ 08 6.09e+ 07
96000 5.85e+ 07 5.86e+ 07 1.75e+ 08 1.39e+ 08 1.15e+ 08 6.13e+ 07
104000 5.87e+ 07 5.89e+ 07 1.77e+ 08 1.39e+ 08 1.16e+ 08 6.15e+ 07
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Table A.11: Standard deviation for the average time bandwidth in bytes per seconds
of the neighbor all-to-all routine, the diagonal stencil, 33 nodes, 32 processes per node
and 3 dimensions

Number of Bytes Rank Reordering Scheme
cart reorder dist greedy cart nodecart cart central greedy cart hyperplane cart

80 2.22e+ 06 2.22e+ 06 1.63e+ 06 1.67e+ 06 1.74e+ 06 2.22e+ 06
160 3.81e+ 06 3.81e+ 06 3.64e+ 06 3.64e+ 06 3.72e+ 06 3.81e+ 06
240 4.62e+ 06 4.62e+ 06 5.33e+ 06 5.45e+ 06 5.33e+ 06 4.62e+ 06
320 5.25e+ 06 5.25e+ 06 6.96e+ 06 6.96e+ 06 6.67e+ 06 5.16e+ 06
400 5.56e+ 06 5.56e+ 06 8.33e+ 06 8.51e+ 06 7.55e+ 06 5.48e+ 06
480 5.85e+ 06 5.85e+ 06 9.80e+ 06 9.80e+ 06 8.28e+ 06 5.78e+ 06
560 6.09e+ 06 6.09e+ 06 1.12e+ 07 1.12e+ 07 8.89e+ 06 5.96e+ 06
640 6.27e+ 06 6.27e+ 06 1.25e+ 07 1.25e+ 07 9.28e+ 06 6.15e+ 06
800 6.50e+ 06 6.50e+ 06 1.45e+ 07 1.45e+ 07 9.88e+ 06 6.35e+ 06
1600 6.99e+ 06 6.99e+ 06 2.25e+ 07 2.25e+ 07 1.11e+ 07 6.84e+ 06
2400 7.08e+ 06 7.08e+ 06 2.58e+ 07 2.58e+ 07 1.14e+ 07 6.92e+ 06
3200 7.10e+ 06 7.10e+ 06 2.81e+ 07 2.78e+ 07 1.16e+ 07 6.96e+ 06
4000 7.09e+ 06 7.10e+ 06 2.90e+ 07 2.86e+ 07 1.17e+ 07 6.98e+ 06
4800 7.12e+ 06 7.12e+ 06 2.87e+ 07 2.84e+ 07 1.17e+ 07 6.98e+ 06
5600 7.29e+ 06 7.29e+ 06 2.87e+ 07 2.83e+ 07 1.17e+ 07 7.13e+ 06
6400 7.48e+ 06 7.48e+ 06 2.95e+ 07 2.91e+ 07 1.19e+ 07 7.28e+ 06
8000 7.51e+ 06 7.51e+ 06 2.99e+ 07 2.93e+ 07 1.20e+ 07 7.33e+ 06
16000 7.85e+ 06 7.86e+ 06 3.11e+ 07 3.04e+ 07 1.25e+ 07 7.55e+ 06
24000 7.56e+ 06 7.57e+ 06 3.31e+ 07 3.37e+ 07 1.21e+ 07 7.25e+ 06
32000 7.60e+ 06 7.64e+ 06 3.41e+ 07 3.46e+ 07 1.24e+ 07 7.37e+ 06
40000 7.61e+ 06 7.64e+ 06 3.43e+ 07 3.49e+ 07 1.24e+ 07 7.32e+ 06
48000 7.68e+ 06 7.71e+ 06 3.50e+ 07 3.56e+ 07 1.25e+ 07 7.39e+ 06
56000 7.66e+ 06 7.69e+ 06 3.49e+ 07 3.54e+ 07 1.24e+ 07 7.36e+ 06
64000 7.67e+ 06 7.71e+ 06 3.53e+ 07 3.56e+ 07 1.25e+ 07 7.40e+ 06
72000 7.71e+ 06 7.72e+ 06 3.59e+ 07 3.57e+ 07 1.26e+ 07 7.34e+ 06
80000 7.72e+ 06 7.72e+ 06 3.59e+ 07 3.58e+ 07 1.26e+ 07 7.36e+ 06
88000 7.71e+ 06 7.73e+ 06 3.58e+ 07 3.58e+ 07 1.26e+ 07 7.35e+ 06
96000 7.72e+ 06 7.73e+ 06 3.57e+ 07 3.56e+ 07 1.26e+ 07 7.35e+ 06
104000 7.71e+ 06 7.73e+ 06 3.56e+ 07 3.57e+ 07 1.26e+ 07 7.35e+ 06
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Table A.12: Standard deviation for the average time bandwidth in bytes per seconds
of the neighbor all-to-all routine, the crank nicolson stencil, 33 nodes, 32 processes
per node and 3 dimensions

Number of Bytes Rank Reordering Scheme
cart reorder dist greedy cart nodecart cart central greedy cart hyperplane cart

80 1.57e+ 06 1.57e+ 06 1.43e+ 06 1.51e+ 06 1.45e+ 06 1.54e+ 06
160 3.48e+ 06 3.48e+ 06 3.20e+ 06 3.33e+ 06 3.27e+ 06 3.33e+ 06
240 5.00e+ 06 5.00e+ 06 4.71e+ 06 4.90e+ 06 4.80e+ 06 5.00e+ 06
320 6.40e+ 06 6.40e+ 06 6.04e+ 06 6.40e+ 06 6.15e+ 06 6.53e+ 06
400 7.55e+ 06 7.55e+ 06 7.27e+ 06 7.55e+ 06 7.41e+ 06 7.69e+ 06
480 8.57e+ 06 8.57e+ 06 8.42e+ 06 8.89e+ 06 8.57e+ 06 8.89e+ 06
560 9.49e+ 06 9.66e+ 06 9.66e+ 06 1.00e+ 07 9.82e+ 06 1.00e+ 07
640 1.05e+ 07 1.05e+ 07 1.07e+ 07 1.10e+ 07 1.08e+ 07 1.10e+ 07
800 1.14e+ 07 1.14e+ 07 1.21e+ 07 1.23e+ 07 1.25e+ 07 1.21e+ 07
1600 1.39e+ 07 1.39e+ 07 1.63e+ 07 1.57e+ 07 1.74e+ 07 1.48e+ 07
2400 1.45e+ 07 1.45e+ 07 1.75e+ 07 1.66e+ 07 1.92e+ 07 1.54e+ 07
3200 1.50e+ 07 1.50e+ 07 1.82e+ 07 1.71e+ 07 2.08e+ 07 1.58e+ 07
4000 1.53e+ 07 1.52e+ 07 1.84e+ 07 1.72e+ 07 2.15e+ 07 1.60e+ 07
4800 1.53e+ 07 1.53e+ 07 1.85e+ 07 1.73e+ 07 2.14e+ 07 1.61e+ 07
5600 1.54e+ 07 1.54e+ 07 1.87e+ 07 1.74e+ 07 2.15e+ 07 1.61e+ 07
6400 1.56e+ 07 1.56e+ 07 1.87e+ 07 1.75e+ 07 2.18e+ 07 1.63e+ 07
8000 1.57e+ 07 1.57e+ 07 1.88e+ 07 1.75e+ 07 2.21e+ 07 1.64e+ 07
16000 1.62e+ 07 1.62e+ 07 1.97e+ 07 1.85e+ 07 2.31e+ 07 1.68e+ 07
24000 1.83e+ 07 1.82e+ 07 1.98e+ 07 1.85e+ 07 2.71e+ 07 1.78e+ 07
32000 1.92e+ 07 1.92e+ 07 2.02e+ 07 1.87e+ 07 2.89e+ 07 1.87e+ 07
40000 1.92e+ 07 1.91e+ 07 2.01e+ 07 1.87e+ 07 2.95e+ 07 1.92e+ 07
48000 1.94e+ 07 1.93e+ 07 2.04e+ 07 1.88e+ 07 3.04e+ 07 1.95e+ 07
56000 1.91e+ 07 1.90e+ 07 2.03e+ 07 1.87e+ 07 3.07e+ 07 1.91e+ 07
64000 1.93e+ 07 1.92e+ 07 2.04e+ 07 1.87e+ 07 3.12e+ 07 1.94e+ 07
72000 1.99e+ 07 1.99e+ 07 2.05e+ 07 1.89e+ 07 3.04e+ 07 2.11e+ 07
80000 1.99e+ 07 1.99e+ 07 2.05e+ 07 1.89e+ 07 3.05e+ 07 2.13e+ 07
88000 2.00e+ 07 2.00e+ 07 2.05e+ 07 1.89e+ 07 3.06e+ 07 2.13e+ 07
96000 2.00e+ 07 2.00e+ 07 2.04e+ 07 1.88e+ 07 3.06e+ 07 2.12e+ 07
104000 2.00e+ 07 2.00e+ 07 2.04e+ 07 1.88e+ 07 3.06e+ 07 2.13e+ 07



Chapter A Page 117

Table A.13: Standard deviation for the average time bandwidth in bytes per seconds of
the neighbor all-to-all routine, the five point hops first stencil, 33 nodes, 32 processes
per node and 3 dimensions

Number of Bytes Rank Reordering Scheme
cart reorder dist greedy cart nodecart cart central greedy cart hyperplane cart

80 1.48e+ 06 1.48e+ 06 1.29e+ 06 1.29e+ 06 1.43e+ 06 1.45e+ 06
160 3.14e+ 06 3.14e+ 06 2.91e+ 06 2.91e+ 06 3.27e+ 06 3.14e+ 06
240 4.62e+ 06 4.62e+ 06 4.21e+ 06 4.14e+ 06 4.80e+ 06 4.62e+ 06
320 6.04e+ 06 6.04e+ 06 5.42e+ 06 5.52e+ 06 6.27e+ 06 6.04e+ 06
400 6.90e+ 06 7.02e+ 06 6.45e+ 06 6.56e+ 06 7.27e+ 06 7.14e+ 06
480 8.00e+ 06 8.00e+ 06 7.62e+ 06 7.62e+ 06 8.73e+ 06 8.42e+ 06
560 9.03e+ 06 8.89e+ 06 8.62e+ 06 8.62e+ 06 9.82e+ 06 9.49e+ 06
640 9.85e+ 06 9.85e+ 06 9.70e+ 06 9.70e+ 06 1.10e+ 07 1.05e+ 07
800 1.07e+ 07 1.07e+ 07 1.11e+ 07 1.11e+ 07 1.29e+ 07 1.19e+ 07
1600 1.34e+ 07 1.33e+ 07 1.60e+ 07 1.60e+ 07 2.00e+ 07 1.67e+ 07
2400 1.41e+ 07 1.41e+ 07 1.76e+ 07 1.80e+ 07 2.40e+ 07 1.82e+ 07
3200 1.51e+ 07 1.51e+ 07 1.89e+ 07 1.96e+ 07 2.69e+ 07 1.96e+ 07
4000 1.54e+ 07 1.54e+ 07 1.94e+ 07 2.03e+ 07 2.86e+ 07 2.01e+ 07
4800 1.55e+ 07 1.55e+ 07 1.92e+ 07 2.03e+ 07 2.94e+ 07 2.03e+ 07
5600 1.56e+ 07 1.56e+ 07 1.96e+ 07 2.03e+ 07 2.95e+ 07 2.03e+ 07
6400 1.58e+ 07 1.58e+ 07 1.98e+ 07 2.06e+ 07 3.06e+ 07 2.06e+ 07
8000 1.58e+ 07 1.59e+ 07 1.95e+ 07 2.04e+ 07 3.12e+ 07 2.09e+ 07
16000 1.59e+ 07 1.59e+ 07 2.09e+ 07 2.20e+ 07 3.19e+ 07 2.12e+ 07
24000 2.14e+ 07 2.14e+ 07 2.17e+ 07 2.39e+ 07 4.63e+ 07 2.88e+ 07
32000 2.17e+ 07 2.18e+ 07 2.19e+ 07 2.45e+ 07 5.06e+ 07 3.00e+ 07
40000 2.16e+ 07 2.17e+ 07 2.16e+ 07 2.46e+ 07 5.31e+ 07 3.05e+ 07
48000 2.19e+ 07 2.20e+ 07 2.17e+ 07 2.49e+ 07 5.45e+ 07 3.09e+ 07
56000 2.17e+ 07 2.18e+ 07 2.13e+ 07 2.47e+ 07 5.54e+ 07 3.08e+ 07
64000 2.17e+ 07 2.18e+ 07 2.13e+ 07 2.49e+ 07 5.59e+ 07 3.11e+ 07
72000 2.17e+ 07 2.16e+ 07 2.11e+ 07 2.46e+ 07 5.39e+ 07 3.13e+ 07
80000 2.16e+ 07 2.15e+ 07 2.11e+ 07 2.46e+ 07 5.41e+ 07 3.15e+ 07
88000 2.16e+ 07 2.15e+ 07 2.09e+ 07 2.45e+ 07 5.42e+ 07 3.15e+ 07
96000 2.15e+ 07 2.15e+ 07 2.08e+ 07 2.45e+ 07 5.44e+ 07 3.16e+ 07
104000 2.15e+ 07 2.14e+ 07 2.08e+ 07 2.44e+ 07 5.44e+ 07 3.16e+ 07
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Table A.14: Standard deviation for the average time bandwidth in bytes per seconds
of the neighbor all-to-all routine, the five point hops last stencil, 33 nodes, 32 processes
per node and 3 dimensions

Number of Bytes Rank Reordering Scheme
cart reorder dist greedy cart nodecart cart central greedy cart hyperplane cart

80 1.27e+ 06 1.29e+ 06 1.31e+ 06 1.31e+ 06 1.29e+ 06 1.29e+ 06
160 2.91e+ 06 2.86e+ 06 2.91e+ 06 2.91e+ 06 2.86e+ 06 2.86e+ 06
240 4.21e+ 06 4.21e+ 06 4.29e+ 06 4.21e+ 06 4.14e+ 06 4.21e+ 06
320 5.42e+ 06 5.42e+ 06 5.52e+ 06 5.52e+ 06 5.52e+ 06 5.52e+ 06
400 6.06e+ 06 6.45e+ 06 6.56e+ 06 6.56e+ 06 6.56e+ 06 6.56e+ 06
480 7.38e+ 06 7.38e+ 06 7.62e+ 06 7.62e+ 06 7.62e+ 06 7.62e+ 06
560 8.36e+ 06 8.36e+ 06 8.62e+ 06 8.62e+ 06 8.62e+ 06 8.62e+ 06
640 9.28e+ 06 9.14e+ 06 9.70e+ 06 9.55e+ 06 9.55e+ 06 9.55e+ 06
800 1.04e+ 07 1.04e+ 07 1.11e+ 07 1.07e+ 07 1.11e+ 07 1.10e+ 07
1600 1.50e+ 07 1.50e+ 07 1.65e+ 07 1.63e+ 07 1.63e+ 07 1.58e+ 07
2400 1.74e+ 07 1.75e+ 07 1.86e+ 07 1.88e+ 07 1.94e+ 07 1.85e+ 07
3200 1.99e+ 07 2.04e+ 07 1.99e+ 07 2.08e+ 07 2.25e+ 07 2.13e+ 07
4000 2.19e+ 07 2.20e+ 07 2.02e+ 07 2.14e+ 07 2.45e+ 07 2.30e+ 07
4800 2.26e+ 07 2.27e+ 07 2.02e+ 07 2.13e+ 07 2.54e+ 07 2.34e+ 07
5600 2.31e+ 07 2.31e+ 07 2.05e+ 07 2.18e+ 07 2.57e+ 07 2.39e+ 07
6400 2.37e+ 07 2.37e+ 07 2.08e+ 07 2.21e+ 07 2.64e+ 07 2.46e+ 07
8000 2.41e+ 07 2.41e+ 07 2.09e+ 07 2.22e+ 07 2.70e+ 07 2.52e+ 07
16000 2.41e+ 07 2.42e+ 07 2.22e+ 07 2.32e+ 07 2.71e+ 07 2.54e+ 07
24000 4.90e+ 07 4.91e+ 07 2.34e+ 07 2.63e+ 07 5.05e+ 07 4.97e+ 07
32000 5.39e+ 07 5.38e+ 07 2.40e+ 07 2.70e+ 07 5.91e+ 07 5.51e+ 07
40000 5.66e+ 07 5.64e+ 07 2.40e+ 07 2.70e+ 07 6.37e+ 07 5.76e+ 07
48000 5.77e+ 07 5.75e+ 07 2.43e+ 07 2.74e+ 07 6.54e+ 07 5.85e+ 07
56000 5.93e+ 07 5.83e+ 07 2.42e+ 07 2.73e+ 07 6.73e+ 07 5.96e+ 07
64000 5.99e+ 07 5.99e+ 07 2.43e+ 07 2.75e+ 07 6.83e+ 07 6.02e+ 07
72000 5.65e+ 07 5.68e+ 07 2.42e+ 07 2.68e+ 07 6.48e+ 07 6.09e+ 07
80000 5.73e+ 07 5.74e+ 07 2.42e+ 07 2.68e+ 07 6.55e+ 07 6.14e+ 07
88000 5.76e+ 07 5.77e+ 07 2.42e+ 07 2.68e+ 07 6.57e+ 07 6.17e+ 07
96000 5.76e+ 07 5.78e+ 07 2.41e+ 07 2.67e+ 07 6.56e+ 07 6.17e+ 07
104000 5.80e+ 07 5.82e+ 07 2.41e+ 07 2.67e+ 07 6.59e+ 07 6.20e+ 07
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